Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Unveiling the bioherbicidal potential of Eupatorium capillifolium (Lam.) Small for selective management of agricultural weeds
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Unveiling the bioherbicidal potential of Eupatorium capillifolium (Lam.) Small for selective management of agricultural weeds

  • Rakesh Kumar Ghosh1,
  • Andrew J. Price2,
  • Melissa Boersma3 &
  • …
  • Aniruddha Maity1 

Scientific Reports , Article number:  (2026) Cite this article

  • 324 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Drug discovery
  • Plant sciences

Abstract

The global rise of herbicide-resistant weeds underscores the urgent need for sustainable weed management strategies. Eupatorium capillifolium (Lam.) Small, a perennial invasive weed native to North America and widespread in the Southeastern United States, presents untapped potential as a bioherbicide. This study evaluated the effects of its aqueous extract on seed germination and early seedling growth of thirteen weed species (nine broadleaf and four grasses) and four major crops (Arachis hypogaea, Zea mays, Glycine max, and Gossypium hirsutum). The extract significantly inhibited seed germination (92.62–100%) of four Amaranthus species (A. palmeri, A. tuberculatus, A. retroflexus, and A. hybridus) with minimal effects on Zea mays and Arachis hypogaea (6.12–6.25%). Other weeds showed a limited response. Inhibition of shoot and root growth confirmed the extract’s allelopathic activity. Principal component analysis indicated inhibition of seed germination as the primary mode of action. The order of pigweeds’ sensitivity to the aqueous extract was A. hybridus > A. retroflexus > A. palmeri > A. tuberculatus. Phytochemical screening identified 36 allelopathic compounds with gallic acid and hydroxy-1,4-benzoquinone as the dominant components. This is the first report demonstrating the bioherbicidal potential of E. capillifolium aqueous extract against Amaranthus spp. under laboratory conditions, highlighting its promise as a sustainable alternative to synthetic herbicides and a candidate for further field-based evaluation in integrated weed management systems.

Similar content being viewed by others

Allelopathic effect of Artemisia argyi on the germination and growth of various weeds

Article Open access 22 February 2021

Surveillance and mapping of tribenuron-methyl-resistant weeds in wheat fields

Article Open access 19 November 2024

Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L.

Article Open access 05 August 2022

Data availability

All data generated in this experiment are presented including a supplementary file.

References

  1. Weed Science Society of America. Weed impacts on crop yields. https://wssa.net/resources/weed-impacts-on-crop-yields/ (2024).

  2. Llewellyn, R. S., Ronning, D., Ouzman, J., Walker, S., Mayfield, A., & Clarke, M. Impact of weeds on Australian grain production: The cost of weeds to Australian grain growers and the adoption of weed management and tillage practices. Report for GRDC. CSIRO, Australia https://grdc.com.au/__data/assets/pdf_file/0017/622034/impact-of-weeds-australian-grain-production-grdc-20250610.pdf (2016).

  3. Gharde, Y., Singh, P. K., Dubey, R. P. & Gupta, P. K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 107, 12–18 (2018).

    Google Scholar 

  4. Heap, I. The international herbicide-resistant weed database. www.weedscience.org (2025).

  5. Moyer, J., Smith, E., Rui, Y. & Hayden, J. Regenerative agriculture and the soil carbon solution. https://rodaleinstitute.org/wp-content/uploads/Rodale-Soil-Carbon-White-Paper_v11-compressed.pdf. (2020)

  6. Peng, G. & Byer, K. N. Interactions of Pyricularia setariae with herbicides for control of green foxtail (Setaria viridis). Weed Technol. 19, 589–598 (2005).

    Google Scholar 

  7. Díaz-Hernández, S., Gallo-Lobet, L., Domínguez-Correa, P. & Rodríguez, A. Effect of repeated cycles of soil solarization and biosolarization on corky root, weeds and fruit yield in screen-house tomatoes under subtropical climate conditions in the Canary Islands. Crop Prot. 94, 20–27 (2017).

    Google Scholar 

  8. Katan, J. & Gamliel, A. Soil Solarization for the Management of Soilborne Pests: The Challenges, Historical Perspective, and Principles (ed. Gamliel, A. & Katan, J.) 45–52 (American Phytopathological Society, 2012).

  9. Aldrich, R. J. & Kremer, R. J. Principles in Weed Management (Iowa State University Press, 1997).

  10. Cordeau, S., Triolet, M., Wayman, S., Steinberg, C. & Guillemin, J. P. Bioherbicides: Dead in the water? A review of the existing products for integrated management. Crop Prot. 87, 44–49 (2016).

    Google Scholar 

  11. VMR. Bioherbicides market by source (microbial bioherbicides, biochemical bioherbicides), mode of action (contact bioherbicides, systemic bioherbicides), application method (foliar spray, soil application), & region for 2024–2031. https://www.verifiedmarketresearch.com/product/bioherbicides-market/ (2024).

  12. Duke, S. O., Pan, Z., Bajsa-Hirshel, J. & Boyette, C. D. The potential future roles oof natural compounds and microbial bioherbicides in weed management in crops. Adv. Weed Sci. 40, e020210054. https://doi.org/10.51694/AdvWeedSci/2022 (2022).

    Google Scholar 

  13. Kremer, R. J. Bioherbicides and Nanotechnology: Current Status and Future Trends (ed. Koul, O.) 353–366 (Academic Press, 2019).

  14. Cimmino, A., Masi, M., Evidente, M., Superchi, S. & Evidente, A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Nat. Prod. Rep. 32, 1629–1653 (2015).

    Google Scholar 

  15. Christians, N. E., Liu, D. & Unruh, J. B. The Use of Protein Hydrolysates for Weed Control (ed. Pasupuleti, V. K. & Demain, A. L.) 127–133 (Springer, 2010).

  16. Boydston, R. A., Collins, H. P. & Vaughn, S. F. Response of weeds and ornamental plants to potting soil amended with dried distillers grains. Hort. Science. 43, 191–195 (2008).

    Google Scholar 

  17. Duke, S. O. et al. Chemicals from nature for weed management. Weed Sci. 50, 138–151 (2002).

    Google Scholar 

  18. Shrestha, A. Potential of a black walnut (Juglans nigra) extract product (NatureCur!) as a pre- and post-emergence bioherbicide. J. Sustain. Agric. 33, 810–822 (2009).

    Google Scholar 

  19. Hasan, M. et al. Weed control efficacy and crop-weed selectivity of a new bioherbicide WeedLock. Agronomy 11, 1488. https://doi.org/10.3390/agronomy11081488 (2021).

    Google Scholar 

  20. Ho, T. L. et al. Rice byproducts reduce seed and seedling survival of Echinochloa crusgalli, Leptochloa chinensi, and Fymbristyulis miliacea. Agronomy 11, 776. https://doi.org/10.3390/agr.onomy11040776 (2021).

    Google Scholar 

  21. Dayan, F. E. & Duke, S. O. Natural compounds as next-generation herbicides. Plant Physiol. 166, 1090–1105 (2014).

    Google Scholar 

  22. Kaur, S., Singh, H. P., Mittal, S., Batish, D. R. & Kohli, R. K. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops Prod. 32, 54–61 (2010).

    Google Scholar 

  23. Hazrati, H., Saharkhiz, M. J., Niakousari, M. & Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 142, 423–430 (2017).

    Google Scholar 

  24. Verdeguer, M., Sanchez-Moreiras, A. M. & Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plant. 9, 1571. https://doi.org/10.3390/plants9111571 (2020).

    Google Scholar 

  25. Lee, D. L. et al. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 45, 601–609 (1997).

    Google Scholar 

  26. Liu, P. Y. et al. Chemical constituents of plants from the genus Eupatorium (1904–2014). Chem. Biodivers. 12, 1481–1515 (2015).

    Google Scholar 

  27. Kundu, A. et al. Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. J. Environ. Sci. Health Part B. 48, 516–522 (2013).

    Google Scholar 

  28. Tabanca, N. et al. Eupatorium capillifolium essential oil: Chemical composition, antifungal activity, and insecticidal activity. Nat. Prod. Commun. 5, 1409–1415 (2010).

    Google Scholar 

  29. Ahluwalia, V. et al. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest. Sci. 87, 341–349 (2014).

    Google Scholar 

  30. Sellers, B. A., Ferrell, J. A., MacDonald, G. E. & Kline, W. N. Dogfennel (Eupatorium capillifolium) size at application affects herbicide efficacy. Weed Technol. 23, 247–250 (2009).

    Google Scholar 

  31. USDA NAAS. Census of Agriculture farms, land in farms, value in land and buildings, and farm use: 2002 and 1997 https://agcensus.library.cornell.edu/census_parts/2002-united-states/ (2002).

  32. Crowder, S. H., Cole, A. W. & Watson, V. H. Weed control and forage quality in tebuthiuron treated pastures. Weed Sci. 31, 585–587 (1982).

    Google Scholar 

  33. Rao, K. V. & Alvarez, F. M. Antibiotic principle of Eupatorium capillifolium. J. Nat. Prod. 44, 252–256 (1981).

    Google Scholar 

  34. Okunade, A. & Wiemer, D. F. Ant-repellent sesquiterpene lactones from Eupatorium quadrangularae. Phytochem. 24, 1199–1201 (1985).

    Google Scholar 

  35. Lancelle, H. G., Giordano, O. S., Sosa, M. E. & Tonn, C. E. Chemical composition of four essential oils from Eupatorium spp. biological activities toward Tribolium castaneum (Coleoptera: Tenebrionidae). Rev. Soc. Entomol. Argentina. 68, 329–338 (2009).

    Google Scholar 

  36. Sosa, M. E., Lancelle, H. G., Tonn, C. E., Andres, M. F. & Gonzalez-Coloma, A. Insecticidal and nematicidal essential oils from Argentinean Eupatorium and Baccharis spp. Biochem. Syst. Ecol. 43, 132–138 (2012).

    Google Scholar 

  37. Hollis, C. A., Smith, J. E. & Fisher, R. F. Allelopathic effects of common understory species on germination and growth of southern pines. For. Sci. 28, 509–515 (1982).

    Google Scholar 

  38. Smith, A. E. Potential allelopathic influence of certain pasture weeds. Crop Prot. 9, 410–414 (1990).

    Google Scholar 

  39. WSSA. WSSA survey ranks most common and most troublesome weeds in broadleaf crops, fruits and vegetables, https://wssa.net/2017/05/wssa-survey-ranks-most-common-and-most-troublesome-weeds-in-broadleaf-crops-fruits-and-vegetables/ (2017).

  40. Dai, L. et al. Effects of water extracts of Flaveria bidentis on the seed germination and seedling growth of three plants. Sci. Rep. 12, 1–7. https://doi.org/10.1038/s41598-022-22527-z (2022).

    Google Scholar 

  41. Williamson, G. B. & Richardson, D. Bioassays for allelopathy: Measuring treatment responses with independent controls. J. Chem. Ecol. 14, 181–187 (1988).

    Google Scholar 

  42. Macías, F. A., Mejías, F. J. & Molinillo, J. M. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manag. Sci. 75, 2413–2436 (2019).

    Google Scholar 

  43. Ghosh, R. K., Price, A. J. & Maity, A. Allelopathic effects of horseweed (Erigeron canadensis) on germination and growth of seven common weeds of the southern United States. Weed Sci. 73, e63. https://doi.org/10.1017/wsc.2025.10034 (2025).

    Google Scholar 

  44. Rice, E. L. Allelopathy—An overview (ed. Cooper-Driver, G. A., Swain, T. & Conn, E. E.) 81–99 (Springer, 1985).

  45. Liu, Y. J., Meng, Z. J., Dang, X. H., Song, W. J. & Zhai, B. Allelopathic effects of Stellera chamaejasme on seed germination and seedling growth of alfalfa and two forage grasses. Acta Pratacult. Sin. 28, 130–138 (2019).

    Google Scholar 

  46. Lopes, R. W., Marques Morais, E., Lacerda, J. J. & Araújo, F. D. Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L. Sci. Rep. 12, 1–12 (2022).

    Google Scholar 

  47. Yu, J. W., Lee, J. H., Song, M. H. & Keum, Y. S. Metabolomic responses of lettuce (Lactuca sativa) to allelopathic benzoquinones from Iris sanguinea seeds. J. Agric. Food Chem. 71, 5143–5153 (2023).

    Google Scholar 

  48. Espinosa-Colín, M. et al. Evaluation of propiophenone, 4-methylacetophenone and 2′,4′-dimethylacetophenone as phytotoxic compounds of labdanum oil from Cistus ladanifer L. Plant. 12, 1187. https://doi.org/10.3390/plants12051187 (2023).

    Google Scholar 

  49. Wu, L., Guo, X. & Harivandi, M. Allelopathic effects of phenolic acids detected in buffalograss (Buchloe dactyloides) clippings on growth of annual bluegrass (Poa annua) and buffalograss seedlings. Environ. Exp. Bot. 39, 159–167 (1998).

    Google Scholar 

  50. Akbar, M. et al. Isolation of herbicidal compounds, quercetin and β-caryophyllene, from Digera muricata. Arab. J. Chem. 16, 104653 (2023).

    Google Scholar 

  51. Khan, A. M. & Khan, M. I. Chemical ecology of capsidiol and its role in plant-plant interactions. Plant Ecol. 219, 1–10 (2018).

    Google Scholar 

  52. Batish, D. R., Singh, H. P., Kaur, S., Kohli, R. K. & Yadav, S. S. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Physiol. 165, 297–305 (2008).

    Google Scholar 

  53. Nishihara, E., Parvez, M. M., Araya, H., Kawashima, S. & Fujii, Y. L-3-(3,4-Dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Regul. 45, 113–120 (2005).

    Google Scholar 

  54. Rudrappa, T., Bonsall, J., Gallagher, J. L. & Bais, H. P. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol. 33, 1898–1918 (2007).

    Google Scholar 

  55. Rice, E. L. Allelopathy-an update. Bot. Rev. 45, 15–109 (1979).

    Google Scholar 

  56. Hussain, M. I., El-Sheikh, M. A. & Reigosa, M. J. Allelopathic potential of aqueous extract from Acacia melanoxylon R. Br on Lactuca sativa. Plants 9, 1228. https://doi.org/10.3390/plants9091228 (2020).

    Google Scholar 

  57. Gulzar, A., Siddiqui, M. B. & Bi, S. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma 253, 1211–1221 (2016).

    Google Scholar 

  58. Blum, U., Shafer, S. R. & Lehman, M. E. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs an experimental model. Crit. Rev. Plant Sci. 18, 673–693 (1999).

    Google Scholar 

  59. Shajib, M. T. I., Pedersen, H. A., Mortensen, A. G., Kudsk, P. & Fomsgaard, I. S. Phytotoxic effect, uptake, and transformation of Biochanin A in selected weed species. J. Agric. Food Chem. 60, 10715–10722 (2012).

    Google Scholar 

  60. Upretee, P., Bandara, M. S. & Tanino, K. K. The role of seed characteristics on water uptake preceding germination. Seeds 3, 559–574 (2024).

    Google Scholar 

  61. Korres, N. E. et al. Seedbank persistence of Palmer amaranth (Amaranthus palmeri) and waterhemp (Amaranthus tuberculatus) across diverse geographical regions in the United States. Weed Sci. 66, 446–456 (2018).

    Google Scholar 

  62. Lamont, B. B., Gómez Barreiro, P. & Newton, R. J. Seed-coat thickness explains contrasting germination responses to smoke and heat in Leucadendron. Seed Sci. Res. 32, 70–77 (2022).

    Google Scholar 

  63. Jovanović, A. A. et al. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 179, 369–380 (2017).

    Google Scholar 

  64. Allen, E. & Alvarez, S. International rules for seed testing 2020 (The International Seed Testing Association, Bassersdorf, 2020).

    Google Scholar 

  65. Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose–response analysis using R. PLoS ONE 10, e0146021. https://doi.org/10.1371/journal.pone.0146021 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the startup funds provided by Auburn University to the corresponding author.

Funding

Startup funds provided by Auburn University to the corresponding author is thankfully acknowledged.

Author information

Authors and Affiliations

  1. Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA

    Rakesh Kumar Ghosh & Aniruddha Maity

  2. USDA-ARS National Soil Dynamics Laboratory, Auburn, AL, 36832, USA

    Andrew J. Price

  3. Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA

    Melissa Boersma

Authors
  1. Rakesh Kumar Ghosh
    View author publications

    Search author on:PubMed Google Scholar

  2. Andrew J. Price
    View author publications

    Search author on:PubMed Google Scholar

  3. Melissa Boersma
    View author publications

    Search author on:PubMed Google Scholar

  4. Aniruddha Maity
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Rakesh Kumar Ghosh: Writing – original draft, Investigation, Data curation, Formal analysis, Conceptualization; Andrew J. Price: Writing – review & editing; Melissa Boersma: Methodology, Data curation; Aniruddha Maity: Writing – review & editing, Supervision, Resources, Project administration, Funding acquisition, Conceptualization.

Corresponding author

Correspondence to Aniruddha Maity.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R.K., Price, A.J., Boersma, M. et al. Unveiling the bioherbicidal potential of Eupatorium capillifolium (Lam.) Small for selective management of agricultural weeds. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37110-z

Download citation

  • Received: 25 April 2025

  • Accepted: 19 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37110-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Allelopathy
  • Bioherbicide
  • Eupatorium capillifolium
  • Seed germination
  • Weed suppression
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research