Abstract
We developed an open-source Plane Wave Expansion Method solver using Python and a custom Tkinter library to solve a design oriented problem of photonic crystal dispersion for known classical examples, custom geometries, and symmetries. Such structures are capable of light confinement, omnidirectional reflection, beam collimation and negative refraction. We dive deeper into the diagonally anisotropic photonic crystals, whose Plane Wave Expansion algorithm is directly embedded in the application. The user interface is present in the developer’s repository link: https://github.com/ZenTunturi/ZenBand.
Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Tang, Y. et al. Optical neural engine for solving scientific partial differential equations. Nat. Commun. 16, 4603 (2025).
Vial, B. & Hao, Y. Open-source computational photonics with auto differentiable topology optimization. Mathematics 10, 3912 (2022).
Jiang, X. et al. Physics-informed neural network for nonlinear dynamics in fiber optics. Laser Photon. Rev. 16, 2100483 (2022).
Su, Y. & Zhang, Q. Glare: A free and open-source software for generation and assessment of digital speckle pattern. Opt. Lasers Eng. 148, 106766 (2022).
Neese, F. Software update: The orca program system—version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).
Erdem, S. et al. Rayx—An optics simulation software for synchrotron applications. Rev. Sci. Instrum. 96 (2025).
Woodhams, L. G. et al. Virtual Blebbistatin: A robust and rapid software approach to motion artifact removal in optical mapping of cardiomyocytes. Proc. Natl. Acad. Sci. 120, e2212949120 (2023).
Lamb, J. R., Ward, E. N. & Kaminski, C. F. Open-source software package for on-the-fly deskewing and live viewing of volumetric lightsheet microscopy data. Biomed. Opt. Exp. 14, 834–845 (2023).
Gröhl, J. et al. Simpa: An open-source toolkit for simulation and image processing for photonics and acoustics. J. Biomed. Opt. 27, 083010–083010 (2022).
Oskooi, A. F. et al. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702. https://doi.org/10.1016/j.cpc.2009.11.008 (2010).
Kim, C. & Lee, B. Torcwa: GPU-accelerated Fourier modal method and gradient-based optimization for metasurface design. Comput. Phys. Commun. 282, 108552. https://doi.org/10.1016/j.cpc.2022.108552 (2023).
Yoon, G. & Rho, J. Maxim: Metasurfaces-oriented electromagnetic wave simulation software with intuitive graphical user interfaces. Comput. Phys. Commun. 264, 107846. https://doi.org/10.1016/j.cpc.2021.107846 (2021).
Sanchez-Brea, L. M. et al. Diffraction: An open-source library for diffraction and interference calculations. In Optics and Photonics for Advanced Dimensional Metrology III (de Groot, P. J., Guzman, F. & Picart, P. eds.) . Vol. 12997. 129971B. https://doi.org/10.1117/12.3021879. (International Society for Optics and Photonics, SPIE, 2024).
Dharmavarapu, R., Ng, S. H., Eftekhari, F., Juodkazis, S. & Bhattacharya, S. Metaoptics: Opensource software for designing metasurface optical element GDSII layouts. Opt. Exp. 28, 3505–3516. https://doi.org/10.1364/OE.384057 (2020).
Dharmavarapu, R., Bhattacharya, S. & Juodkazis, S. GDOESII: Software for design of diffractive optical elements and phase mask conversion to GDSII lithography files. SoftwareX 9, 126–131. https://doi.org/10.1016/j.softx.2019.01.012 (2019).
Veettikazhy, M. et al. Bpm-Matlab: An open-source optical propagation simulation tool in Matlab. Opt. Exp. 29, 11819–11832. https://doi.org/10.1364/OE.420493 (2021).
Magalhães, T. E. & Rebordão, J. M. Pywolf: A pyopencl implementation for simulating the propagation of partially coherent light. Comput. Phys. Commun. 276, 108336. https://doi.org/10.1016/j.cpc.2022.108336 (2022).
Loetgering, L. et al. Ptylab.m/py/jl: A cross-platform, open-source inverse modeling toolbox for conventional and Fourier ptychography. Opt. Exp. 31, 13763–13797. https://doi.org/10.1364/OE.485370 (2023).
Hugonin, J. P. & Lalanne, P. Reticolo software for grating analysis. arXiv preprint arXiv:2101.00901 (2021).
Zuo, S., Doñoro, D. G., Zhang, Y., Bai, Y. & Zhao, X. Simulation of challenging electromagnetic problems using a massively parallel finite element method solver. IEEE Access 7, 20346–20362 (2019).
Yavich, N. & Zhdanov, M. S. Finite-element EM modelling on hexahedral grids with an FD solver as a pre-conditioner. Geophys. J. Int. 223, 840–850 (2020).
Liu, V. & Fan, S. S4: A free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012).
Tang, G.-J. et al. Broadband and fabrication-tolerant 3-db couplers with topological valley edge modes. Light Sci. Appl. 13, 166 (2024).
Huang, H., Yang, C., Li, H. & Zhang, Z. Unveiling the potential of photonic crystal surface emitting lasers: A concise review. In Semiconductor Science and Technology (2025).
Han, C. et al. Generating first-order optical vortex beams by photonic crystal slabs. Opt. Exp. 32, 27591–27598 (2024).
Deng, R. et al. Broadband complete polarization control via inverse-designed photonic crystal slabs. Adv. Opt. Mater. 12, 2303218 (2024).
Ho, K., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152 (1990).
Rumpf, R., Garcia, C., Berry, E. & Barton, J. Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects. Prog. Electromagnet. Res. B 61, 55–67. https://doi.org/10.2528/PIERB14071606 (2014).
Rumpf, R. C. Engineering the dispersion and anisotropy of periodic electromagnetic structures. In Solid State Physics. Vol. 66. 213–300 (Elsevier, 2015).
Zanotti, S. et al. Legume: A free implementation of the guided-mode expansion method for photonic crystal slabs. Comput. Phys. Commun. 304, 109286 (2024).
Yang, Y., Jiang, H. & Hang, Z. H. Topological valley transport in two-dimensional honeycomb photonic crystals. Sci. Rep. 8, 1588 (2018).
Shi, B. et al. Efficient coupling of topological photonic crystal waveguides based on transverse spin matching mechanism. Nat. Commun. 16. https://doi.org/10.1038/s41467-025-59941-6 (2025).
Li, M. et al. Ultrabroadband valley transmission and corner states in valley photonic crystals with dendritic structure. Commun. Phys. 7, 214 (2024).
Xu, Z.-H. et al. Quantitative terahertz communication evaluation of compact valley topological photonic crystal waveguides. ACS Photon. 12, 1822–1828 (2025).
Xu, X. et al. Polymer valley photonic crystals with honeycomb structures for terahertz waveguides. Opt. Commun. 538, 129446 (2023).
Moniem, T. A. All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015).
Jamois, C. et al. Silicon-based two-dimensional photonic crystal waveguides. Photon. Nanostruct.-Fundam. Appl. 1, 1–13 (2003).
Yuksel, Z. M. et al. Enhanced self-collimation effect by low rotational symmetry in hexagonal lattice photonic crystals. Phys. Scr. 99, 065017 (2024).
Qiu, P. et al. Investigation of beam splitter in a zero-refractive-index photonic crystal at the frequency of Dirac-like point. Sci. Rep. 7. https://doi.org/10.1038/s41598-017-10056-z (2017).
Meade, R. D. V., Johnson, S. G. & Winn, J. N. Photonic crystals: Molding the flow of light (2008).
Oppenheim, A. V. & Schafer, R. W. Discrete-Time Signal Processing. Prentice-Hall Signal Processing Series (Pearson, 2010).
Arik, K. & Akbari, M. Polynomial expansion method for full wave three-dimensional analysis of dielectric waveguides and periodic structures. Opt. Exp. 32, 16115–16131. https://doi.org/10.1364/OE.519283 (2024).
Fay, T. H. & Kloppers, P. H. The Gibbs’ phenomenon. Int. J. Math. Educ. Sci. Technol. 32, 73–89. https://doi.org/10.1080/00207390117151 (2001).
Lou, B. & Fan, S. Rcwa4d: Electromagnetic solver for layered structures with incommensurate periodicities. Comput. Phys. Commun. 306, 109356. https://doi.org/10.1016/j.cpc.2024.109356 (2025).
Götz, P., Schuster, T., Frenner, K., Rafler, S. & Osten, W. Normal vector method for the RCWA with automated vector field generation. Opt. Exp. 16, 17295–17301. https://doi.org/10.1364/OE.16.017295 (2008).
Funding
D.G. acknowledges funding from the Research Council of Lithuania (LMTLT), grant No. S-MIP-23-49. A.Z. and I.L. acknowledge the “Universities’ Excellence Initiative” programme by the Ministry of Education, Science and Sports of the Republic of Lithuania under the agreement with the Research Council of Lithuania (project No. S-A-UEI-23–6).
Author information
Authors and Affiliations
Contributions
I.L. and A.Z. developed ZenBand academic and commercial software, D.G. is the leader of the technical project. All authors contributed equally to this paper. I.L. and A.Z. have made equal contributions to the ZenBand software.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zinkevičius, A., Lukošiūnas, I. & Gailevičius, D. ZenBand: a numerical solver of photonic crystals with a graphical user interface. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37129-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37129-2