Abstract
Through tactile sensations, we perceive the mechanical interactions between our body and the external world, which enable us to explore its physical properties such as shape, texture, hardness, and temperature. When we casually touch objects, we perceive their textures even without performing any specific task. Individuals employ different strategies when exploring an object with or without an explicit task. This study examined individual differences in baseline motion patterns. Skin characteristics significantly influence tactile perception and friction coefficients. Thus, it can be inferred that skin properties are also related to motion characteristics. This study focuses on skin stiffness and investigates its relationship with normal force during natural stroking of a textured surface. The experimental results for thirty participants aged 18–25 years showed a significant correlation between the normal force used and skin stiffness of the fingertip. This indicates that individuals with stiffer skin tend to apply a larger normal force, while those with softer skin apply a smaller one. We also revealed that fingertip skin stiffness varies more widely than finger size, and finger size does not correlate with the normal force. Therefore, we conclude that skin stiffness is a key factor affecting the normal force applied during natural touch.
Similar content being viewed by others
Data availability
Behavioral data are available at https://doi.org/10.6084/m9.figshare.30510110. For further information or data requests, please contact Yoshihiro Tanaka (tanaka.yoshihiro@nitech.ac.jp).
References
Lederman, S. J. & Klatzky, R. L. Haptic perception: A tutorial. Atten. Percept. Psychophys 71, 1439–1459. https://doi.org/10.3758/APP.71.7.1439 (2009).
Metzger, A., Toscani, M., Valsecchi, M. & Drewing, K. Dynamics of exploration in haptic search. In 2019 IEEE World Haptics Conference, 277–282, https://doi.org/10.1109/WHC.2019.8816174 (2019).
Lezkan, A. & Drewing, K. Interdependences between finger movement direction and haptic perception of oriented textures. PLOS ONE 13, e0208988. https://doi.org/10.1371/journal.pone.0208988 (2018).
Smith, A. M., Gosselin, G. & Houde, B. Deployment of fingertip forces in tactile exploration. Exp. Brain Res. 147, 209–218. https://doi.org/10.1007/s00221-002-1240-4 (2002).
Kaim, L. & Drewing, K. Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. IEEE Trans. Haptics 4, 242–252. https://doi.org/10.1109/TOH.2011.19 (2011).
Katircilar, D. & Drewing, K. The effects of movement direction and glove on spatial frequency discrimination in oriented textures. In 2023 IEEE World Haptics Conference (WHC), 313–318, https://doi.org/10.1109/WHC56415.2023.10224465 (2023).
Natsume, M., Tanaka, Y., Bergmann Tiest, W. M. & Kappers, A. M. L. Skin vibration and contact force in active perception for roughness ratings. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication, 1479–1484, https://doi.org/10.1109/ROMAN.2017.8172499 (2017).
Wiertlewski, M. & Hayward, V. Mechanical behavior of the fingertip in the range of frequencies and displacements relevant to touch. J. Biomech. 45, 1869–1874. https://doi.org/10.1016/j.jbiomech.2012.05.045 (2012).
Shao, Y., Hayward, V. & Visell, Y. Spatial patterns of cutaneous vibration during whole-hand haptic interactions. Proc. Natl. Acad. Sci. USA 113, 4188–4193. https://doi.org/10.1073/pnas.1520866113 (2016).
Lederman, S. J., Loomis, J. M. & Williams, D. A. The role of vibration in the tactual perception of roughness. Percep. Psychophys. 32, 109–116. https://doi.org/10.3758/BF03204270 (1982).
Skedung, L. et al. Tactile perception: Finger friction, surface roughness and perceived coarseness. Tribol. Int. 44, 505–512. https://doi.org/10.1016/j.triboint.2010.04.010 (2011).
Natsume, M., Tanaka, Y. & Sano, A. Skin-propagated vibration for roughness and textures. In 2016 World Automation Congress, 1570256175, https://doi.org/10.1016/j.triboint.2010.04.010 (2016).
Tanaka, Y., Bergmann Tiest, W. M., Kappers, A. M. L. & Sano, A. Contact force and scanning velocity during active roughness perception. PLOS ONE 9, e93363. https://doi.org/10.1371/journal.pone.0093363 (2014).
Lederman, S. J. & Taylor, M. M. Fingertip force, surface geometry, and the perception of roughness by active touch. Attent. Percep. Psychophys. 12, 401–408. https://doi.org/10.3758/BF03205850 (1972).
Okamoto, S., Nagano, H. & Yamada, Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6, 81–93. https://doi.org/10.1109/TOH.2012.32 (2012).
Smith, A. M., Chapman, C. E., Deslandes, M., Langlais, J. S. & Thibodeau, M. P. Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144, 211–223. https://doi.org/10.1007/s00221-002-1015-y (2002).
Koudine, A. A., Barquins, M., Anthoine, P., Aubert, L. & Leveque, J. L. Frictional properties of skin: Proposal of a new approach. Int. J. Cosmet. Sci. 22, 11–20. https://doi.org/10.1046/j.1467-2494.2000.00006.x (2000).
Sivamani, R. K., Goodman, J., Gitis, N. V. & Maibach, H. I. Friction coefficient of skin in real-time. Skin Res. Technol. 9, 235–239. https://doi.org/10.1034/j.1600-0846.2003.20361.x (2003).
Kurimoto, K., Torres, D. A., Tanaka, Y., Kappers, A. M. L. & Giraud, F. Individual differences of friction coefficient and normal force on friction perception. In IEEE World Haptics Conference, 78–84, https://doi.org/10.1109/WHC64065.2025.11123253 (2025).
Mabuchi, K., Sakai, R., Yoshida, K. & Ujihira, M. Effect of ageing on friction of human fingers. Biosurface Biotribol. 4, 117–121. https://doi.org/10.1049/bsbt.2018.0030 (2018).
Montagna, W. & Carlisle, K. Structural changes in aging human skin. J. Invest. Dermatol. 73, 47–53. https://doi.org/10.1111/1523-1747.ep12532761 (1979).
Gescheider, G. A., Bolanowski, S. J., Hall, K. L., Hoffman, K. E. & Verrillo, R. T. The effects of aging on information-processing channels in the sense of touch: I. absolute sensitivity. Somatosens. Motor Res. 11, 345–357. https://doi.org/10.3109/08990229409028878 (1994).
Stevens, J. C. & Patterson, M. Q. Spatial acuity of the body surface over the life span. Somatos. Motor Res. 13, 153–166. https://doi.org/10.3109/08990229609051403 (1995).
Stevens, J. C. & Choo, K. K. Dimensions of spatial acuity in the touch sense: Changes over the life span. Somatos. Motor Res. 12, 29–47. https://doi.org/10.3109/08990229509063140 (1995).
Deflorio, D., Di Luca, M. & Wing, A. M. Skin properties and afferent density in the deterioration of tactile spatial acuity with age. J. Physiol. 601, 517–533. https://doi.org/10.1113/JP283174 (2023).
Bruce, M. F. The relation of tactile thresholds to histology in the fingers of elderly people. J. Neurol. Neurosurg. Psychiatry 43, 730–734. https://doi.org/10.1136/jnnp.43.8.730 (1980).
Bruce, M. F. & Sinclair, D. C. The relationship between tactile thresholds and histology in the human finger. J. Neurol. Neurosurg. Psychiatry 43, 235–242. https://doi.org/10.1136/jnnp.43.3.235 (1980).
Pearce, H. & Grimmer, B. J. Age and chemical constitution of the human dermis. J. Investig. Dermatol. 58, 347–361. https://doi.org/10.1111/1523-1747.ep12540531 (1972).
Kostowlicki, M. & Lewicka-Kus, L. Variations of the subepidermal elastic plexus of the ageing human skin. Z Mikrosk Anat Forsch 84, 145–198 (1971).
Jarrett, A. Ageing of the epidermis. Physiol. Pathophysiol. Skin 1, 116–121 (1973).
Peters, R. M., Hackeman, E. & Goldreich, D. Diminutive digits discern delicate details: Fingertip size and the sex difference in tactile spatial acuity. J. Neurosci. 29, 15756–15761. https://doi.org/10.1523/JNEUROSCI.3684-09.2009 (2009).
Peters, R. M. & Goldreich, D. Tactile spatial acuity in childhood: Effects of age and fingertip size. PLOS ONE 8, e84650. https://doi.org/10.1371/journal.pone.0084650 (2013).
Abdouni, A., Moreau, G., Vargiolu, R. & Zahouani, H. Static and active tactile perception and touch anisotropy: Aging and gender effect. Sci. Rep. 8, 14240. https://doi.org/10.1038/s41598-018-32724-4 (2018).
Olczak, D., Sukumar, V. & Pruszynski, J. A. Edge orientation perception during active touch. J. Neurophysiol. 20, 2423–2429. https://doi.org/10.1152/jn.00280.2018 (2018).
Li, B. & Gerling, G. An individual’s skin stiffness predicts their tactile acuity. bioRxiv 601, https://doi.org/10.1101/2023.07.17.548686 (2023).
Maeno, T., Kobayashi, K. & Yamazaki, N. Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. Series C: Mech. Syst. Mach. Elements Manuf. 41, 94–100. https://doi.org/10.1299/jsmec.41.94 (1998).
Jahangier, A., Aliabbasi, E. & Solomoli, M. Effect of finger orientation on contact stiffness and area during sliding. IEEE Trans. Haptics 18, 1–13. https://doi.org/10.1109/TOH.2024.3509219 (2025).
Abdouni, A., Djaghloul, M., Thieulin, C., Vargiolu, R. & Pailler-Mattei, C. Biophysical properties of the human finger for touch comprehension: Influences of ageing and gender. R. Soc. Open Sci. 4, 170321. https://doi.org/10.1098/rsos.170321 (2017).
Sandford, E., Chen, Y., Hunter, I., Hillebrand, G. & Jones, L. Capturing skin properties from dynamic mechanical analyses. Skin Res. Technol. 19, 339–348. https://doi.org/10.1111/j.1600-0846.2012.00649.x (2013).
van Kuilenburg, J., Masen, M. A. & van der Heide, E. A review of fingerpad contact mechanics and friction and how this affects tactile perception. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 243–258. https://doi.org/10.1177/1350650113504908 (2015).
Inoue, K., Okamoto, S., Akiyama, Y. & Yamada, Y. Surfaces with finger-sized concave feel softer. IEEE Trans. Haptic 15, 32–38. https://doi.org/10.1109/TOH.2021.3138640 (2022).
Dzidek, B. M., Adams, M. J., Andrews, J. W., Zhang, Z. & Johnson, S. A. Contact mechanics of the human finger pad under compressive loads. J. R. Soc. Interface 14, 20160935. https://doi.org/10.1098/rsif.2016.0935 (2017).
Coren, S. The Left-hander Syndrome (Vintage Books, New York, 1993).
Acknowledgements
This work was supported by Inamori Research Institute for Science.
Funding
This study was carried out with the support of Inamori Research Institute for Science.
Author information
Authors and Affiliations
Contributions
K.K., Y.T, and A.K designed the experiment, K.K. and E.F. conducted the experiment, K.K. analyzed the results, K.K, Y.T and A.K. prepared the manuscript. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Kurimoto, K., Fitch, E., Kappers, A.M.L. et al. Normal force in natural active touch correlates with fingertip stiffness. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37174-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37174-x


