Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Normal force in natural active touch correlates with fingertip stiffness
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Normal force in natural active touch correlates with fingertip stiffness

  • Kaho Kurimoto1,
  • Evan Fitch2,
  • Astrid M. L. Kappers3,4 &
  • …
  • Yoshihiro Tanaka1,5 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Neuroscience
  • Psychology

Abstract

Through tactile sensations, we perceive the mechanical interactions between our body and the external world, which enable us to explore its physical properties such as shape, texture, hardness, and temperature. When we casually touch objects, we perceive their textures even without performing any specific task. Individuals employ different strategies when exploring an object with or without an explicit task. This study examined individual differences in baseline motion patterns. Skin characteristics significantly influence tactile perception and friction coefficients. Thus, it can be inferred that skin properties are also related to motion characteristics. This study focuses on skin stiffness and investigates its relationship with normal force during natural stroking of a textured surface. The experimental results for thirty participants aged 18–25 years showed a significant correlation between the normal force used and skin stiffness of the fingertip. This indicates that individuals with stiffer skin tend to apply a larger normal force, while those with softer skin apply a smaller one. We also revealed that fingertip skin stiffness varies more widely than finger size, and finger size does not correlate with the normal force. Therefore, we conclude that skin stiffness is a key factor affecting the normal force applied during natural touch.

Similar content being viewed by others

Normal and tangential forces combine to convey contact pressure during dynamic tactile stimulation

Article Open access 17 May 2022

Effects of skin moisturization on various aspects of touch showing differences with age and skin site

Article Open access 20 October 2023

Physical correlates of human-like softness elicit high tactile pleasantness

Article Open access 13 August 2021

Data availability

Behavioral data are available at https://doi.org/10.6084/m9.figshare.30510110. For further information or data requests, please contact Yoshihiro Tanaka (tanaka.yoshihiro@nitech.ac.jp).

References

  1. Lederman, S. J. & Klatzky, R. L. Haptic perception: A tutorial. Atten. Percept. Psychophys 71, 1439–1459. https://doi.org/10.3758/APP.71.7.1439 (2009).

    Google Scholar 

  2. Metzger, A., Toscani, M., Valsecchi, M. & Drewing, K. Dynamics of exploration in haptic search. In 2019 IEEE World Haptics Conference, 277–282, https://doi.org/10.1109/WHC.2019.8816174 (2019).

  3. Lezkan, A. & Drewing, K. Interdependences between finger movement direction and haptic perception of oriented textures. PLOS ONE 13, e0208988. https://doi.org/10.1371/journal.pone.0208988 (2018).

    Google Scholar 

  4. Smith, A. M., Gosselin, G. & Houde, B. Deployment of fingertip forces in tactile exploration. Exp. Brain Res. 147, 209–218. https://doi.org/10.1007/s00221-002-1240-4 (2002).

    Google Scholar 

  5. Kaim, L. & Drewing, K. Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. IEEE Trans. Haptics 4, 242–252. https://doi.org/10.1109/TOH.2011.19 (2011).

    Google Scholar 

  6. Katircilar, D. & Drewing, K. The effects of movement direction and glove on spatial frequency discrimination in oriented textures. In 2023 IEEE World Haptics Conference (WHC), 313–318, https://doi.org/10.1109/WHC56415.2023.10224465 (2023).

  7. Natsume, M., Tanaka, Y., Bergmann Tiest, W. M. & Kappers, A. M. L. Skin vibration and contact force in active perception for roughness ratings. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication, 1479–1484, https://doi.org/10.1109/ROMAN.2017.8172499 (2017).

  8. Wiertlewski, M. & Hayward, V. Mechanical behavior of the fingertip in the range of frequencies and displacements relevant to touch. J. Biomech. 45, 1869–1874. https://doi.org/10.1016/j.jbiomech.2012.05.045 (2012).

    Google Scholar 

  9. Shao, Y., Hayward, V. & Visell, Y. Spatial patterns of cutaneous vibration during whole-hand haptic interactions. Proc. Natl. Acad. Sci. USA 113, 4188–4193. https://doi.org/10.1073/pnas.1520866113 (2016).

    Google Scholar 

  10. Lederman, S. J., Loomis, J. M. & Williams, D. A. The role of vibration in the tactual perception of roughness. Percep. Psychophys. 32, 109–116. https://doi.org/10.3758/BF03204270 (1982).

    Google Scholar 

  11. Skedung, L. et al. Tactile perception: Finger friction, surface roughness and perceived coarseness. Tribol. Int. 44, 505–512. https://doi.org/10.1016/j.triboint.2010.04.010 (2011).

    Google Scholar 

  12. Natsume, M., Tanaka, Y. & Sano, A. Skin-propagated vibration for roughness and textures. In 2016 World Automation Congress, 1570256175, https://doi.org/10.1016/j.triboint.2010.04.010 (2016).

  13. Tanaka, Y., Bergmann Tiest, W. M., Kappers, A. M. L. & Sano, A. Contact force and scanning velocity during active roughness perception. PLOS ONE 9, e93363. https://doi.org/10.1371/journal.pone.0093363 (2014).

    Google Scholar 

  14. Lederman, S. J. & Taylor, M. M. Fingertip force, surface geometry, and the perception of roughness by active touch. Attent. Percep. Psychophys. 12, 401–408. https://doi.org/10.3758/BF03205850 (1972).

    Google Scholar 

  15. Okamoto, S., Nagano, H. & Yamada, Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6, 81–93. https://doi.org/10.1109/TOH.2012.32 (2012).

    Google Scholar 

  16. Smith, A. M., Chapman, C. E., Deslandes, M., Langlais, J. S. & Thibodeau, M. P. Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144, 211–223. https://doi.org/10.1007/s00221-002-1015-y (2002).

    Google Scholar 

  17. Koudine, A. A., Barquins, M., Anthoine, P., Aubert, L. & Leveque, J. L. Frictional properties of skin: Proposal of a new approach. Int. J. Cosmet. Sci. 22, 11–20. https://doi.org/10.1046/j.1467-2494.2000.00006.x (2000).

    Google Scholar 

  18. Sivamani, R. K., Goodman, J., Gitis, N. V. & Maibach, H. I. Friction coefficient of skin in real-time. Skin Res. Technol. 9, 235–239. https://doi.org/10.1034/j.1600-0846.2003.20361.x (2003).

    Google Scholar 

  19. Kurimoto, K., Torres, D. A., Tanaka, Y., Kappers, A. M. L. & Giraud, F. Individual differences of friction coefficient and normal force on friction perception. In IEEE World Haptics Conference, 78–84, https://doi.org/10.1109/WHC64065.2025.11123253 (2025).

  20. Mabuchi, K., Sakai, R., Yoshida, K. & Ujihira, M. Effect of ageing on friction of human fingers. Biosurface Biotribol. 4, 117–121. https://doi.org/10.1049/bsbt.2018.0030 (2018).

    Google Scholar 

  21. Montagna, W. & Carlisle, K. Structural changes in aging human skin. J. Invest. Dermatol. 73, 47–53. https://doi.org/10.1111/1523-1747.ep12532761 (1979).

    Google Scholar 

  22. Gescheider, G. A., Bolanowski, S. J., Hall, K. L., Hoffman, K. E. & Verrillo, R. T. The effects of aging on information-processing channels in the sense of touch: I. absolute sensitivity. Somatosens. Motor Res. 11, 345–357. https://doi.org/10.3109/08990229409028878 (1994).

    Google Scholar 

  23. Stevens, J. C. & Patterson, M. Q. Spatial acuity of the body surface over the life span. Somatos. Motor Res. 13, 153–166. https://doi.org/10.3109/08990229609051403 (1995).

    Google Scholar 

  24. Stevens, J. C. & Choo, K. K. Dimensions of spatial acuity in the touch sense: Changes over the life span. Somatos. Motor Res. 12, 29–47. https://doi.org/10.3109/08990229509063140 (1995).

    Google Scholar 

  25. Deflorio, D., Di Luca, M. & Wing, A. M. Skin properties and afferent density in the deterioration of tactile spatial acuity with age. J. Physiol. 601, 517–533. https://doi.org/10.1113/JP283174 (2023).

    Google Scholar 

  26. Bruce, M. F. The relation of tactile thresholds to histology in the fingers of elderly people. J. Neurol. Neurosurg. Psychiatry 43, 730–734. https://doi.org/10.1136/jnnp.43.8.730 (1980).

    Google Scholar 

  27. Bruce, M. F. & Sinclair, D. C. The relationship between tactile thresholds and histology in the human finger. J. Neurol. Neurosurg. Psychiatry 43, 235–242. https://doi.org/10.1136/jnnp.43.3.235 (1980).

    Google Scholar 

  28. Pearce, H. & Grimmer, B. J. Age and chemical constitution of the human dermis. J. Investig. Dermatol. 58, 347–361. https://doi.org/10.1111/1523-1747.ep12540531 (1972).

    Google Scholar 

  29. Kostowlicki, M. & Lewicka-Kus, L. Variations of the subepidermal elastic plexus of the ageing human skin. Z Mikrosk Anat Forsch 84, 145–198 (1971).

    Google Scholar 

  30. Jarrett, A. Ageing of the epidermis. Physiol. Pathophysiol. Skin 1, 116–121 (1973).

    Google Scholar 

  31. Peters, R. M., Hackeman, E. & Goldreich, D. Diminutive digits discern delicate details: Fingertip size and the sex difference in tactile spatial acuity. J. Neurosci. 29, 15756–15761. https://doi.org/10.1523/JNEUROSCI.3684-09.2009 (2009).

    Google Scholar 

  32. Peters, R. M. & Goldreich, D. Tactile spatial acuity in childhood: Effects of age and fingertip size. PLOS ONE 8, e84650. https://doi.org/10.1371/journal.pone.0084650 (2013).

    Google Scholar 

  33. Abdouni, A., Moreau, G., Vargiolu, R. & Zahouani, H. Static and active tactile perception and touch anisotropy: Aging and gender effect. Sci. Rep. 8, 14240. https://doi.org/10.1038/s41598-018-32724-4 (2018).

    Google Scholar 

  34. Olczak, D., Sukumar, V. & Pruszynski, J. A. Edge orientation perception during active touch. J. Neurophysiol. 20, 2423–2429. https://doi.org/10.1152/jn.00280.2018 (2018).

    Google Scholar 

  35. Li, B. & Gerling, G. An individual’s skin stiffness predicts their tactile acuity. bioRxiv 601, https://doi.org/10.1101/2023.07.17.548686 (2023).

  36. Maeno, T., Kobayashi, K. & Yamazaki, N. Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. Series C: Mech. Syst. Mach. Elements Manuf. 41, 94–100. https://doi.org/10.1299/jsmec.41.94 (1998).

    Google Scholar 

  37. Jahangier, A., Aliabbasi, E. & Solomoli, M. Effect of finger orientation on contact stiffness and area during sliding. IEEE Trans. Haptics 18, 1–13. https://doi.org/10.1109/TOH.2024.3509219 (2025).

    Google Scholar 

  38. Abdouni, A., Djaghloul, M., Thieulin, C., Vargiolu, R. & Pailler-Mattei, C. Biophysical properties of the human finger for touch comprehension: Influences of ageing and gender. R. Soc. Open Sci. 4, 170321. https://doi.org/10.1098/rsos.170321 (2017).

    Google Scholar 

  39. Sandford, E., Chen, Y., Hunter, I., Hillebrand, G. & Jones, L. Capturing skin properties from dynamic mechanical analyses. Skin Res. Technol. 19, 339–348. https://doi.org/10.1111/j.1600-0846.2012.00649.x (2013).

    Google Scholar 

  40. van Kuilenburg, J., Masen, M. A. & van der Heide, E. A review of fingerpad contact mechanics and friction and how this affects tactile perception. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 243–258. https://doi.org/10.1177/1350650113504908 (2015).

    Google Scholar 

  41. Inoue, K., Okamoto, S., Akiyama, Y. & Yamada, Y. Surfaces with finger-sized concave feel softer. IEEE Trans. Haptic 15, 32–38. https://doi.org/10.1109/TOH.2021.3138640 (2022).

    Google Scholar 

  42. Dzidek, B. M., Adams, M. J., Andrews, J. W., Zhang, Z. & Johnson, S. A. Contact mechanics of the human finger pad under compressive loads. J. R. Soc. Interface 14, 20160935. https://doi.org/10.1098/rsif.2016.0935 (2017).

    Google Scholar 

  43. Coren, S. The Left-hander Syndrome (Vintage Books, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Inamori Research Institute for Science.

Funding

This study was carried out with the support of Inamori Research Institute for Science.

Author information

Authors and Affiliations

  1. Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan

    Kaho Kurimoto & Yoshihiro Tanaka

  2. Clemson University, 105 Sikes Hall, Clemson, SC, 29634-5124, USA

    Evan Fitch

  3. Robotics, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands

    Astrid M. L. Kappers

  4. Human Technology Interaction, Department of IE&IS, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands

    Astrid M. L. Kappers

  5. Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan

    Yoshihiro Tanaka

Authors
  1. Kaho Kurimoto
    View author publications

    Search author on:PubMed Google Scholar

  2. Evan Fitch
    View author publications

    Search author on:PubMed Google Scholar

  3. Astrid M. L. Kappers
    View author publications

    Search author on:PubMed Google Scholar

  4. Yoshihiro Tanaka
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.K., Y.T, and A.K designed the experiment, K.K. and E.F. conducted the experiment, K.K. analyzed the results, K.K, Y.T and A.K. prepared the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yoshihiro Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurimoto, K., Fitch, E., Kappers, A.M.L. et al. Normal force in natural active touch correlates with fingertip stiffness. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37174-x

Download citation

  • Received: 04 November 2025

  • Accepted: 20 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37174-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing