Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Nighttime warming enhances photosynthetic activity and induces changes in chloroplast membrane structure and antioxidant profile in Platycerium ferns
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Nighttime warming enhances photosynthetic activity and induces changes in chloroplast membrane structure and antioxidant profile in Platycerium ferns

  • Jakub Oliwa1,
  • Apolonia Sieprawska1 &
  • Barbara Dyba1 

Scientific Reports , Article number:  (2026) Cite this article

  • 637 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Physiology
  • Plant sciences

Abstract

Global warming leads to asymmetric shifts in daily temperature, with nighttime temperatures increasing more rapidly, which may significantly impact plant physiological processes. Ferns are among the species sensitive to climate change, however their responses to rising nighttime temperatures remain poorly understood. The aim of this study was to evaluate changes in the photosynthetic apparatus and antioxidant profile of two popular ornamental fern species: Platycerium bifurcatum and Platycerium alcicorne in response to an increase in nighttime temperature to daytime levels (resulting in a 2.3 °C increase in the daily mean). The analysis included measurements of chlorophyll a fluorescence, gas exchange parameters, pigment profile, antioxidant enzyme activity, non-enzymatic antioxidant content, lipid peroxidation level and physicochemical properties of chloroplast membranes. For the first time in ferns, it was demonstrated that an elevation in nighttime temperature stimulated gross photosynthesis and increased the efficiency of photosystem II. Furthermore, an increase in chlorophyll and flavonoid content, a reduction in malondialdehyde levels (MDA), and greater chloroplast membrane elasticity was observed, particularly within galactolipids fraction. Moderate nocturnal warming may stimulate acclimation processes, improving the photosynthetic efficiency of ferns and enhancing their adaptive potential, which is relevant in the context of the predicted expansion of climate-resilient species and their role in urban ecosystems. The experiment provides a foundation for further research on the effects of long-term warming on the reproduction, growth and population dynamics of Platycerium and other fern species.

Similar content being viewed by others

Opposing shifts in distributions of chlorophyll concentration and composition in grassland under warming

Article Open access 03 August 2021

Plant traits shape global spatiotemporal variations in photosynthetic efficiency

Article 25 March 2025

Photosynthetic acclimation of crassulacean acid metabolism orchid Phalaenopsis in response to light level

Article Open access 15 April 2025

Data availability

Data are available from the author upon request: Jakub Oliwa (jakub.oliwa@uken.krakow.pl).

Abbreviations

ABS/RC:

Absorbed energy per reaction center

APX:

Ascorbate peroxidase

CAT:

Catalase

CIB:

Chloroplast isolation buffer

Chl:

Chlorophyll

Cs⁻¹:

Static compression modulus

DGDG:

Digalactosyldiacylglycerol

DIo/RC:

Dissipated energy per reaction center

DTNB:

5,5’–dithio–bis(2–nitrobenzoic acid)

E:

Transpiration rate

EDTA:

Ethylenediaminetetraacetic acid

FL:

Fluorescence

Flav:

Flavonols

Fm:

Maximum fluorescence

Fo:

Minimal fluorescence

GR:

Glutathione reductase

GSH:

Reduced glutathione

LHCII:

Light–harvesting complex of photosystem II

MDA:

Malondialdehyde

MGDG:

Monogalactosyldiacylglycerol

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced form)

NBI:

Nitrogen balance index

OEC:

Oxygen–evolving complex of photosystem II

PL:

Phospholipids

PG :

Gross photosynthesis

POD:

Peroxidase

PSI:

Photosystem I

REo/RC:

Electron transport per reaction center

RuBP:

Ribulose–1,5–bisphosphate

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

TNB:

5’–thio–2–nitrobenzoic acid

Vj:

Relative variable fluorescence at J step

References

  1. Davy, R., Esau, I., Chernokulsky, A., Outten, S. & Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 37, 3935–3940. https://doi.org/10.1002/joc.4688 (2017).

    Google Scholar 

  2. Duan, Q., McGrory, C. A., Brown, G., Mengersen, K. & Wang, Y. G. Spatio-temporal quantile regression analysis revealing more nuanced patterns of climate change: a study of long-term daily temperature in Australia. PLoS One. 17, e0271457. https://doi.org/10.1371/journal.pone.0271457 (2022).

    Google Scholar 

  3. Bureau of Meteorology (BOM). Australian Government. Annual Climate Statement 2024. http://www.bom.gov.au/state-of-the-climate (accessed 18 Jul 2025).

  4. Martinez, C. A. et al. Moderate warming increases PSII performance, antioxidant scavenging systems and biomass production in stylosanthes capitata Vogel. Environ. Exp. Bot. 102, 58–67. https://doi.org/10.1016/j.envexpbot.2014.02.001 (2014).

    Google Scholar 

  5. Kettler, B. A. et al. High night temperature during maize post-flowering increases night respiration and reduces photosynthesis, growth and kernel number. J. Agron. Crop Sci. 208, 335–347. https://doi.org/10.1111/jac.12589 (2022).

    Google Scholar 

  6. Turnbull, M. H., Murthy, R. & Griffin, K. L. The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant. Cell. Environ. 25, 1729–1737. https://doi.org/10.1046/j.1365-3040.2002.00947.x (2002).

    Google Scholar 

  7. Llorens, L. et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north–south European gradient. Ecosystems 7, 613–624. https://doi.org/10.1007/s10021-004-0180-1 (2004).

    Google Scholar 

  8. John, S. P. & Hasenstein, K. H. Desiccation mitigates heat stress in the resurrection fern pleopeltis polypodioides. Front. Plant. Sci. 11, 597731. https://doi.org/10.3389/fpls.2020.597731 (2020).

    Google Scholar 

  9. Tosens, T. et al. The photosynthetic capacity in 35 fern and fern-allies species: mesophyll conductance is a major limitation. New. Phytol. 209, 1576–1590. https://doi.org/10.1111/nph.13719 (2016).

    Google Scholar 

  10. Anderson, O. R. Physiological ecology of ferns: biodiversity and conservation perspectives. In Bioactive Compounds in Bryophytes and Pteridophytes, 1–21 (Springer, Cham, https://doi.org/10.1007/978-3-030-97415-2_33-1 (2022).

    Google Scholar 

  11. Pie, M. R. et al. Fern and lycophyte niche displacement under predicted climate change in Honduras. Plant. Ecol. 223, 613–625. https://doi.org/10.1007/s11258-022-01235-8 (2022).

    Google Scholar 

  12. Silva, D. C. et al. Decline in the potential distribution of fern species under climate change scenarios. Rev. Gestão Sustent Ambient. 18 (7), e04772. https://doi.org/10.24857/rgsa.v18n7-029 (2024).

    Google Scholar 

  13. Landeros-López, J. G. et al. Influence of microclimatic variations on morphological traits of ferns in urban forests of central Veracruz. Mexico Plants. 14, 1732. https://doi.org/10.3390/plants14111732 (2025).

    Google Scholar 

  14. Liu, Y., Wu, C., Wang, X. & Zhang, Y. Contrasting responses of peak vegetation growth to asymmetric warming: evidence from FLUXNET and satellite observations. Glob Chang. Biol. 29, 2363–2379. https://doi.org/10.1111/gcb.16592 (2023).

    Google Scholar 

  15. Qian, H., Wang, S., Li, Y., Xiao, M. & Wang, X. Disentangling the relative effects of ambient energy, water availability, and energy–water balance on pteridophyte species richness at a landscape scale in China. Plant. Ecol. 213, 749–756. https://doi.org/10.1007/s11258-012-0038-0 (2012).

    Google Scholar 

  16. Oliwa, J., Skoczowski, A., Rut, G. & Kornaś, A. Water-deficit stress in the epiphytic Elkhorn fern: insight into photosynthetic response. Int. J. Mol. Sci. 24, 12064. https://doi.org/10.3390/ijms241512064 (2023).

    Google Scholar 

  17. Oliwa, J., Stawoska, I., Janeczko, A., Oklestkova, J. & Skoczowski, A. Response of the photosynthetic apparatus in tropical fern platycerium bifurcatum to increased Ozone concentration. Photosynthetica 57, 1119–1129. https://doi.org/10.32615/ps.2019.117 (2019).

    Google Scholar 

  18. Wu, J. & Brock, J. The invasion of non-native epiphyte platycerium bifurcatum in auckland’s urban forest canopy. N Z. J. Ecol. 47, 3542. https://doi.org/10.20417/nzjecol.47.3542 (2023).

    Google Scholar 

  19. Kreier, H. P. & Schneider, H. Phylogeny and biogeography of the Staghorn fern genus platycerium (Polypodiaceae, Polypodiidae). Am. J. Bot. 93, 217–225. https://doi.org/10.3732/ajb.93.2.217 (2006).

    Google Scholar 

  20. Xue, B. et al. Out of Africa origin of the Pantropical Staghorn fern genus platycerium (Polypodiaceae) supported by plastid phylogenomics and biogeographical analysis. Ann. Bot. 133, 697–710. https://doi.org/10.1093/aob/mcae003 (2024).

    Google Scholar 

  21. Verdcourt, B. Flora of Tropical East Africa – Polypodiaceae 1st edn (Routledge, 2001). https://doi.org/10.1201/9780203755792

  22. Strasser, R. J., Srivastava, A. & Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism Regulation and Adaptation (eds (eds Yunus, M., Pathre, U. & Mohanty, P.) 443–480 (Taylor and Francis, London, (2000).

    Google Scholar 

  23. Oukarroum, A., El Madidi, S., Schansker, G. & Strasser, R. J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OJIP under drought stress and re-watering. Environ. Exp. Bot. 60, 438–446. https://doi.org/10.1016/j.envexpbot.2007.01.002 (2007).

    Google Scholar 

  24. Skoczowski, A., Rut, G., Oliwa, J. & Kornaś, A. Sporulation modifies the photosynthetic activity of sporotrophophyll leaves of platycerium bifurcatum. Photosynthetica 58, 488–496. https://doi.org/10.32615/ps.2019.176 (2020).

    Google Scholar 

  25. McCord, J. M. & Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    Google Scholar 

  26. Lück, H. Methods of Enzymatic Analysis 1st edn, Vol. 1, 895–897 (Verlag Chemie GmbH, 1963).

  27. Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 (1981).

    Google Scholar 

  28. Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3 (1984).

    Google Scholar 

  29. Jiang, M. & Zhang, J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant. Cell. Physiol. 42, 1265–1273. https://doi.org/10.1093/pcp/pce162 (2001).

    Google Scholar 

  30. Griffith, O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212 (1980).

    Google Scholar 

  31. Kapur, A. et al. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bull. Chem. Technol. Bosnia Herzegovina. 38, 39–42 (2012).

    Google Scholar 

  32. Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 (1968).

    Google Scholar 

  33. Barbasz, A. et al. Biologically active substances in plant extracts from mistletoe viscum album and trees: Fir (Abies Alba Mill.), pine (Pinus sylvestris L.) and Yew (Taxus baccata L). Herba Pol. 58, 1–7 (2012).

    Google Scholar 

  34. Sieprawska, A. et al. Response of chloroplasts of tolerant and sensitive wheat genotypes to manganese excess: structural and biochemical properties. Acta Physiol. Plant. 39, 1–6. https://doi.org/10.1007/s11738-016-2302-8 (2017).

    Google Scholar 

  35. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/10.1139/o59-099 (1959).

    Google Scholar 

  36. Rudolphi–Szydło, E., Sadura, I., Filek, M., Gruszka, D. & Janeczko, A. The impact of mutations in the HvCPD and HvBRI1 genes on the physicochemical properties of the membranes from barley acclimated to low/high temperatures. Cells 9, 1125. https://doi.org/10.3390/cells9051125 (2020).

    Google Scholar 

  37. Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta. 1286, 183–223. https://doi.org/10.1016/s0304-4157(96)00009-3 (1996).

    Google Scholar 

  38. Filek, M. et al. Effect of selenium on characteristics of rape chloroplasts modified by cadmium. J. Plant. Physiol. 167, 28–33. https://doi.org/10.1016/j.jplph.2009.07.003 (2010).

    Google Scholar 

  39. Liu, X. Z. & Huang, B. R. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. J. Plant. Physiol. 165, 1947–1953. https://doi.org/10.1016/j.jplph.2008.05.001 (2008).

    Google Scholar 

  40. Niinemets, Ü. When leaves go over the thermal edge. Plant. Cell. Environ. 41, 1247–1250. https://doi.org/10.1111/pce.13184 (2018).

    Google Scholar 

  41. Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011 (2007).

    Google Scholar 

  42. Brestic, M., Zivcak, M., Kalaji, H. M., Carpentier, R. & Allakhverdiev, S. I. Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in triticum aestivum L. Plant. Physiol. Biochem. 57, 93–105. https://doi.org/10.1016/j.plaphy.2012.05.012 (2012).

    Google Scholar 

  43. Zivcak, M. et al. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res. 117, 529–546. https://doi.org/10.1007/s11120-013-9885-3 (2013).

    Google Scholar 

  44. Yamane, Y., Kashino, Y., Koike, H. & Satoh, K. Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res. 57, 51–59. https://doi.org/10.1023/A:1006019102619 (1998).

    Google Scholar 

  45. Kalaji, H. M. et al. The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. In: Emerging Technologies and Management of Crop Stress Tolerance, Vol. 2, 347–384. Academic; https://doi.org/10.1016/B978-0-12-800875-1.00015-6. (2014).

  46. Chen, S., Yang, J., Zhang, M., Strasser, R. J. & Qiang, S. Classification and characteristics of heat tolerance in ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environ. Exp. Bot. 122, 126–140. https://doi.org/10.1016/j.envexpbot.2015.09.011 (2016).

    Google Scholar 

  47. Kalaji, H. M. et al. Chlorophyll a fluorescence as a tool to monitor plant physiological status. Acta Physiol. Plant. 38, 102. https://doi.org/10.1007/s11738-016-2113-y (2016).

  48. Bednaříková, M. et al. Analysis of K- and L-band appearance in ojips in Antarctic lichens in low and high temperature. Photosynthetica 58, 646–656. https://doi.org.32615/ps.2019.180 (2020).

  49. Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (eds (eds Papageorgiou, G. C. & Govindjee) 321–362 (Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-3218-9_12 (2004).

    Google Scholar 

  50. Tsimilli-Michael, M. & Strasser, R. J. Biophysical phenomics: evaluation of the impact of mycorrhization with Piriformospora indica. In Piriformospora indica. Sebacinales and their Biotechnological Applications (eds (eds Varma, A., Kost, G. & Oelmüller, R.) 173–190 (Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-642-33802-1_10 (2013).

    Google Scholar 

  51. Kalaji, H. M., Bosa, K., Kościelniak, J. & Hossain, Z. Chlorophyll a fluorescence – a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L). OMICS 16, 17–25. https://doi.org/10.1089/omi.2011.007 (2012).

    Google Scholar 

  52. Pereira, W. E., Siqueira, D. L., Martínez, C. A. & Puiatti, M. Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J. Plant. Physiol. 157, 513–520. https://doi.org/10.1016/S0176-1617(00)80106-6 (2000).

    Google Scholar 

  53. Oliwa, J. & Skoczowski, A. Different response of photosynthetic apparatus to high-light stress in sporotrophophyll and nest leaves of platycerium bifurcatum. Photosynthetica 57, 147–159. https://doi.org/10.32615/ps.2019.037 (2019).

    Google Scholar 

  54. Kalaji, H. M., Bąba, W. & Gediga, K. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth Res. 136, 329–343. https://doi.org/10.1007/s11120-017-0467-7 (2018).

    Google Scholar 

  55. Filaček, A. et al. Pre-acclimation to elevated temperature stabilizes the activity of photosystem I in wheat plants exposed to an episode of severe heat stress. Plants (Basel). 11, 616. https://doi.org/10.3390/plants11050616 (2022).

    Google Scholar 

  56. Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72 (8), 2822–2844. https://doi.org/10.1093/jxb/erab090 (2021).

    Google Scholar 

  57. Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E. & Galmés, J. Rubisco and Rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front. Plant. Sci. 8, 490. https://doi.org/10.3389/fpls.2017.00490 (2017).

    Google Scholar 

  58. Mathur, S., Agrawal, D. & Jajoo, A. Photosynthesis: response to high temperature stress. J. Photochem. Photobiol B. 137, 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010 (2014).

    Google Scholar 

  59. Wan, S., Xia, J., Liu, W. & Niu, S. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90, 2700–2710. https://doi.org/10.1890/08-2026.1 (2009).

    Google Scholar 

  60. Stamps, R. H. Production temperatures influence growth and physiology of leatherleaf fern. HortScience 29, 67–70. https://doi.org/10.21273/HORTSCI.29.2.67 (1994).

    Google Scholar 

  61. Munné-Bosch, S. & Peñuelas, J. Drought-induced oxidative stress in strawberry tree (Arbutus Unedo L.) growing in mediterranean field conditions. Plant. Sci. 166, 1105–1110. https://doi.org/10.1016/j.plantsci.2003.12.034 (2004).

    Google Scholar 

  62. Liu, Y., Ren, X. & Jeong, B. R. Night temperature affects the growth, metabolism, and photosynthetic gene expression in astragalus Membranaceus and Codonopsis lanceolata plug seedlings. Plants (Basel). 8, 407. https://doi.org/10.3390/plants8100407 (2019).

    Google Scholar 

  63. Hietz, P. Fern adaptations to xeric environments. In Fern Ecology (eds Mehltreter, K., Walker, L. R. & Sharpe, J. M.) 140–176 (Cambridge University Press, 2010). https://doi.org/10.1017/CBO9780511844898.006

  64. Hasanuzzaman, M., Nahar, K., Alam, M. M. & Fujita, M. Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J. Crop Sci. 6, 1314–1323. https://doi.org/10.1007/s12298-018-0531-6 (2012).

    Google Scholar 

  65. Rudolphi–Skórska, E., Filek, M. & Zembala, M. Physicochemical aspects of reaction of Ozone with galactolipid and galactolipid–Tocopherol layers. J. Membr. Biol. 247, 639–649. https://doi.org/10.1007/s00232-014-9681-9 (2014).

    Google Scholar 

  66. Rudolphi–Skórska, E., Filek, M. & Zembala, M. The effects of the structure and composition of the hydrophobic parts of phosphatidylcholine–containing systems on phosphatidylcholine oxidation by Ozone. J. Membr. Biol. 250, 493–505. https://doi.org/10.1007/s00232-017-9976-8 (2017).

    Google Scholar 

  67. Foyer, C. H. & Noctor, G. Ascorbate and glutathione: the heart of the redox hub. Plant. Physiol. 155, 2–18. https://doi.org/10.1104/pp.110.167569 (2011).

    Google Scholar 

  68. Rivero, R. M., Ruiz, J. M. & Romero, L. M. Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compounds in tomato plants. Plant. Biol. 6, 702–707. https://doi.org/10.1055/s-2004-821293 (2004).

    Google Scholar 

  69. Hu, X. et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant. Growth Regul. 60, 225–235. https://doi.org/10.1007/s10725-009-9436-2 (2010).

    Google Scholar 

  70. Dai, A. H. et al. Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ. Exp. Bot. 79, 1–10. https://doi.org/10.1016/j.envexpbot.2012.01.003 (2012).

    Google Scholar 

  71. Kocsy, G., Szalai, G. & Galiba, G. Effect of heat stress on glutathione biosynthesis in wheat. Acta Biol. Szeged. 46, 71–72 (2002).

    Google Scholar 

  72. Brown, M. R., Abbott, R. J. & Twyford, A. D. The emerging importance of cross ploidy hybridisation and introgression. Mol. Ecol. 33, e17315. https://doi.org/10.1111/mec.17315 (2024).

    Google Scholar 

  73. Filek, M., Zembala, M., Dudek, A., Laggner, P. & Kriechbaum, M. Electric and structural studies of hormone interaction with Chloroplast envelope membranes isolated from vegetative and generative rape. J. Plant. Physiol. 164, 861–867. https://doi.org/10.1016/j.jplph.2006.05.015 (2007).

    Google Scholar 

  74. Stachurska, J. et al. Cold acclimation and deacclimation of winter oilseed rape, with special attention being paid to the role of brassinosteroids. Int. J. Mol. Sci. 25, 6010. https://doi.org/10.3390/ijms25116010 (2024).

    Google Scholar 

  75. Hölzl, G. & Dörmann, P. Chloroplast lipids and their biosynthesis. Annu. Rev. Plant. Biol. 70, 51–81. https://doi.org/10.1146/annurev-arplant-050718-100202 (2019).

    Google Scholar 

  76. Velitchkova, M. et al. Effect of high temperature on dehydration-induced alterations in photosynthetic characteristics of the resurrection plant Haberlea rhodopensis. Photosynthetica 51, 630–640. https://doi.org/10.1007/s11099-013-0063-9 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, 31–084, Poland

    Jakub Oliwa, Apolonia Sieprawska & Barbara Dyba

Authors
  1. Jakub Oliwa
    View author publications

    Search author on:PubMed Google Scholar

  2. Apolonia Sieprawska
    View author publications

    Search author on:PubMed Google Scholar

  3. Barbara Dyba
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Methodology, formal analysis, investigation, writing - review and editing, visualization – J.O., A.S., B.D. conceptualization, data curation, writing - original draft preparation, supervision: J.O. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jakub Oliwa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliwa, J., Sieprawska, A. & Dyba, B. Nighttime warming enhances photosynthetic activity and induces changes in chloroplast membrane structure and antioxidant profile in Platycerium ferns. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37176-9

Download citation

  • Received: 25 September 2025

  • Accepted: 20 January 2026

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37176-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Platycerium bifurcatum
  • Platycerium alcicorne
  • Chlorophyll a fluorescence
  • Langmuir isotherms
  • Antioxidants
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene