Abstract
Global warming leads to asymmetric shifts in daily temperature, with nighttime temperatures increasing more rapidly, which may significantly impact plant physiological processes. Ferns are among the species sensitive to climate change, however their responses to rising nighttime temperatures remain poorly understood. The aim of this study was to evaluate changes in the photosynthetic apparatus and antioxidant profile of two popular ornamental fern species: Platycerium bifurcatum and Platycerium alcicorne in response to an increase in nighttime temperature to daytime levels (resulting in a 2.3 °C increase in the daily mean). The analysis included measurements of chlorophyll a fluorescence, gas exchange parameters, pigment profile, antioxidant enzyme activity, non-enzymatic antioxidant content, lipid peroxidation level and physicochemical properties of chloroplast membranes. For the first time in ferns, it was demonstrated that an elevation in nighttime temperature stimulated gross photosynthesis and increased the efficiency of photosystem II. Furthermore, an increase in chlorophyll and flavonoid content, a reduction in malondialdehyde levels (MDA), and greater chloroplast membrane elasticity was observed, particularly within galactolipids fraction. Moderate nocturnal warming may stimulate acclimation processes, improving the photosynthetic efficiency of ferns and enhancing their adaptive potential, which is relevant in the context of the predicted expansion of climate-resilient species and their role in urban ecosystems. The experiment provides a foundation for further research on the effects of long-term warming on the reproduction, growth and population dynamics of Platycerium and other fern species.
Similar content being viewed by others
Data availability
Data are available from the author upon request: Jakub Oliwa (jakub.oliwa@uken.krakow.pl).
Abbreviations
- ABS/RC:
-
Absorbed energy per reaction center
- APX:
-
Ascorbate peroxidase
- CAT:
-
Catalase
- CIB:
-
Chloroplast isolation buffer
- Chl:
-
Chlorophyll
- Cs⁻¹:
-
Static compression modulus
- DGDG:
-
Digalactosyldiacylglycerol
- DIo/RC:
-
Dissipated energy per reaction center
- DTNB:
-
5,5’–dithio–bis(2–nitrobenzoic acid)
- E:
-
Transpiration rate
- EDTA:
-
Ethylenediaminetetraacetic acid
- FL:
-
Fluorescence
- Flav:
-
Flavonols
- Fm:
-
Maximum fluorescence
- Fo:
-
Minimal fluorescence
- GR:
-
Glutathione reductase
- GSH:
-
Reduced glutathione
- LHCII:
-
Light–harvesting complex of photosystem II
- MDA:
-
Malondialdehyde
- MGDG:
-
Monogalactosyldiacylglycerol
- NADPH:
-
Nicotinamide adenine dinucleotide phosphate (reduced form)
- NBI:
-
Nitrogen balance index
- OEC:
-
Oxygen–evolving complex of photosystem II
- PL:
-
Phospholipids
- PG :
-
Gross photosynthesis
- POD:
-
Peroxidase
- PSI:
-
Photosystem I
- REo/RC:
-
Electron transport per reaction center
- RuBP:
-
Ribulose–1,5–bisphosphate
- SOD:
-
Superoxide dismutase
- TBA:
-
Thiobarbituric acid
- TCA:
-
Trichloroacetic acid
- TNB:
-
5’–thio–2–nitrobenzoic acid
- Vj:
-
Relative variable fluorescence at J step
References
Davy, R., Esau, I., Chernokulsky, A., Outten, S. & Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 37, 3935–3940. https://doi.org/10.1002/joc.4688 (2017).
Duan, Q., McGrory, C. A., Brown, G., Mengersen, K. & Wang, Y. G. Spatio-temporal quantile regression analysis revealing more nuanced patterns of climate change: a study of long-term daily temperature in Australia. PLoS One. 17, e0271457. https://doi.org/10.1371/journal.pone.0271457 (2022).
Bureau of Meteorology (BOM). Australian Government. Annual Climate Statement 2024. http://www.bom.gov.au/state-of-the-climate (accessed 18 Jul 2025).
Martinez, C. A. et al. Moderate warming increases PSII performance, antioxidant scavenging systems and biomass production in stylosanthes capitata Vogel. Environ. Exp. Bot. 102, 58–67. https://doi.org/10.1016/j.envexpbot.2014.02.001 (2014).
Kettler, B. A. et al. High night temperature during maize post-flowering increases night respiration and reduces photosynthesis, growth and kernel number. J. Agron. Crop Sci. 208, 335–347. https://doi.org/10.1111/jac.12589 (2022).
Turnbull, M. H., Murthy, R. & Griffin, K. L. The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant. Cell. Environ. 25, 1729–1737. https://doi.org/10.1046/j.1365-3040.2002.00947.x (2002).
Llorens, L. et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north–south European gradient. Ecosystems 7, 613–624. https://doi.org/10.1007/s10021-004-0180-1 (2004).
John, S. P. & Hasenstein, K. H. Desiccation mitigates heat stress in the resurrection fern pleopeltis polypodioides. Front. Plant. Sci. 11, 597731. https://doi.org/10.3389/fpls.2020.597731 (2020).
Tosens, T. et al. The photosynthetic capacity in 35 fern and fern-allies species: mesophyll conductance is a major limitation. New. Phytol. 209, 1576–1590. https://doi.org/10.1111/nph.13719 (2016).
Anderson, O. R. Physiological ecology of ferns: biodiversity and conservation perspectives. In Bioactive Compounds in Bryophytes and Pteridophytes, 1–21 (Springer, Cham, https://doi.org/10.1007/978-3-030-97415-2_33-1 (2022).
Pie, M. R. et al. Fern and lycophyte niche displacement under predicted climate change in Honduras. Plant. Ecol. 223, 613–625. https://doi.org/10.1007/s11258-022-01235-8 (2022).
Silva, D. C. et al. Decline in the potential distribution of fern species under climate change scenarios. Rev. Gestão Sustent Ambient. 18 (7), e04772. https://doi.org/10.24857/rgsa.v18n7-029 (2024).
Landeros-López, J. G. et al. Influence of microclimatic variations on morphological traits of ferns in urban forests of central Veracruz. Mexico Plants. 14, 1732. https://doi.org/10.3390/plants14111732 (2025).
Liu, Y., Wu, C., Wang, X. & Zhang, Y. Contrasting responses of peak vegetation growth to asymmetric warming: evidence from FLUXNET and satellite observations. Glob Chang. Biol. 29, 2363–2379. https://doi.org/10.1111/gcb.16592 (2023).
Qian, H., Wang, S., Li, Y., Xiao, M. & Wang, X. Disentangling the relative effects of ambient energy, water availability, and energy–water balance on pteridophyte species richness at a landscape scale in China. Plant. Ecol. 213, 749–756. https://doi.org/10.1007/s11258-012-0038-0 (2012).
Oliwa, J., Skoczowski, A., Rut, G. & Kornaś, A. Water-deficit stress in the epiphytic Elkhorn fern: insight into photosynthetic response. Int. J. Mol. Sci. 24, 12064. https://doi.org/10.3390/ijms241512064 (2023).
Oliwa, J., Stawoska, I., Janeczko, A., Oklestkova, J. & Skoczowski, A. Response of the photosynthetic apparatus in tropical fern platycerium bifurcatum to increased Ozone concentration. Photosynthetica 57, 1119–1129. https://doi.org/10.32615/ps.2019.117 (2019).
Wu, J. & Brock, J. The invasion of non-native epiphyte platycerium bifurcatum in auckland’s urban forest canopy. N Z. J. Ecol. 47, 3542. https://doi.org/10.20417/nzjecol.47.3542 (2023).
Kreier, H. P. & Schneider, H. Phylogeny and biogeography of the Staghorn fern genus platycerium (Polypodiaceae, Polypodiidae). Am. J. Bot. 93, 217–225. https://doi.org/10.3732/ajb.93.2.217 (2006).
Xue, B. et al. Out of Africa origin of the Pantropical Staghorn fern genus platycerium (Polypodiaceae) supported by plastid phylogenomics and biogeographical analysis. Ann. Bot. 133, 697–710. https://doi.org/10.1093/aob/mcae003 (2024).
Verdcourt, B. Flora of Tropical East Africa – Polypodiaceae 1st edn (Routledge, 2001). https://doi.org/10.1201/9780203755792
Strasser, R. J., Srivastava, A. & Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism Regulation and Adaptation (eds (eds Yunus, M., Pathre, U. & Mohanty, P.) 443–480 (Taylor and Francis, London, (2000).
Oukarroum, A., El Madidi, S., Schansker, G. & Strasser, R. J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OJIP under drought stress and re-watering. Environ. Exp. Bot. 60, 438–446. https://doi.org/10.1016/j.envexpbot.2007.01.002 (2007).
Skoczowski, A., Rut, G., Oliwa, J. & Kornaś, A. Sporulation modifies the photosynthetic activity of sporotrophophyll leaves of platycerium bifurcatum. Photosynthetica 58, 488–496. https://doi.org/10.32615/ps.2019.176 (2020).
McCord, J. M. & Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).
Lück, H. Methods of Enzymatic Analysis 1st edn, Vol. 1, 895–897 (Verlag Chemie GmbH, 1963).
Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 (1981).
Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3 (1984).
Jiang, M. & Zhang, J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant. Cell. Physiol. 42, 1265–1273. https://doi.org/10.1093/pcp/pce162 (2001).
Griffith, O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212 (1980).
Kapur, A. et al. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bull. Chem. Technol. Bosnia Herzegovina. 38, 39–42 (2012).
Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 (1968).
Barbasz, A. et al. Biologically active substances in plant extracts from mistletoe viscum album and trees: Fir (Abies Alba Mill.), pine (Pinus sylvestris L.) and Yew (Taxus baccata L). Herba Pol. 58, 1–7 (2012).
Sieprawska, A. et al. Response of chloroplasts of tolerant and sensitive wheat genotypes to manganese excess: structural and biochemical properties. Acta Physiol. Plant. 39, 1–6. https://doi.org/10.1007/s11738-016-2302-8 (2017).
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/10.1139/o59-099 (1959).
Rudolphi–Szydło, E., Sadura, I., Filek, M., Gruszka, D. & Janeczko, A. The impact of mutations in the HvCPD and HvBRI1 genes on the physicochemical properties of the membranes from barley acclimated to low/high temperatures. Cells 9, 1125. https://doi.org/10.3390/cells9051125 (2020).
Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta. 1286, 183–223. https://doi.org/10.1016/s0304-4157(96)00009-3 (1996).
Filek, M. et al. Effect of selenium on characteristics of rape chloroplasts modified by cadmium. J. Plant. Physiol. 167, 28–33. https://doi.org/10.1016/j.jplph.2009.07.003 (2010).
Liu, X. Z. & Huang, B. R. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. J. Plant. Physiol. 165, 1947–1953. https://doi.org/10.1016/j.jplph.2008.05.001 (2008).
Niinemets, Ü. When leaves go over the thermal edge. Plant. Cell. Environ. 41, 1247–1250. https://doi.org/10.1111/pce.13184 (2018).
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011 (2007).
Brestic, M., Zivcak, M., Kalaji, H. M., Carpentier, R. & Allakhverdiev, S. I. Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in triticum aestivum L. Plant. Physiol. Biochem. 57, 93–105. https://doi.org/10.1016/j.plaphy.2012.05.012 (2012).
Zivcak, M. et al. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res. 117, 529–546. https://doi.org/10.1007/s11120-013-9885-3 (2013).
Yamane, Y., Kashino, Y., Koike, H. & Satoh, K. Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res. 57, 51–59. https://doi.org/10.1023/A:1006019102619 (1998).
Kalaji, H. M. et al. The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. In: Emerging Technologies and Management of Crop Stress Tolerance, Vol. 2, 347–384. Academic; https://doi.org/10.1016/B978-0-12-800875-1.00015-6. (2014).
Chen, S., Yang, J., Zhang, M., Strasser, R. J. & Qiang, S. Classification and characteristics of heat tolerance in ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environ. Exp. Bot. 122, 126–140. https://doi.org/10.1016/j.envexpbot.2015.09.011 (2016).
Kalaji, H. M. et al. Chlorophyll a fluorescence as a tool to monitor plant physiological status. Acta Physiol. Plant. 38, 102. https://doi.org/10.1007/s11738-016-2113-y (2016).
Bednaříková, M. et al. Analysis of K- and L-band appearance in ojips in Antarctic lichens in low and high temperature. Photosynthetica 58, 646–656. https://doi.org.32615/ps.2019.180 (2020).
Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (eds (eds Papageorgiou, G. C. & Govindjee) 321–362 (Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-3218-9_12 (2004).
Tsimilli-Michael, M. & Strasser, R. J. Biophysical phenomics: evaluation of the impact of mycorrhization with Piriformospora indica. In Piriformospora indica. Sebacinales and their Biotechnological Applications (eds (eds Varma, A., Kost, G. & Oelmüller, R.) 173–190 (Springer, Berlin/Heidelberg, https://doi.org/10.1007/978-3-642-33802-1_10 (2013).
Kalaji, H. M., Bosa, K., Kościelniak, J. & Hossain, Z. Chlorophyll a fluorescence – a useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L). OMICS 16, 17–25. https://doi.org/10.1089/omi.2011.007 (2012).
Pereira, W. E., Siqueira, D. L., Martínez, C. A. & Puiatti, M. Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J. Plant. Physiol. 157, 513–520. https://doi.org/10.1016/S0176-1617(00)80106-6 (2000).
Oliwa, J. & Skoczowski, A. Different response of photosynthetic apparatus to high-light stress in sporotrophophyll and nest leaves of platycerium bifurcatum. Photosynthetica 57, 147–159. https://doi.org/10.32615/ps.2019.037 (2019).
Kalaji, H. M., Bąba, W. & Gediga, K. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth Res. 136, 329–343. https://doi.org/10.1007/s11120-017-0467-7 (2018).
Filaček, A. et al. Pre-acclimation to elevated temperature stabilizes the activity of photosystem I in wheat plants exposed to an episode of severe heat stress. Plants (Basel). 11, 616. https://doi.org/10.3390/plants11050616 (2022).
Moore, C. E. et al. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72 (8), 2822–2844. https://doi.org/10.1093/jxb/erab090 (2021).
Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E. & Galmés, J. Rubisco and Rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front. Plant. Sci. 8, 490. https://doi.org/10.3389/fpls.2017.00490 (2017).
Mathur, S., Agrawal, D. & Jajoo, A. Photosynthesis: response to high temperature stress. J. Photochem. Photobiol B. 137, 116–126. https://doi.org/10.1016/j.jphotobiol.2014.01.010 (2014).
Wan, S., Xia, J., Liu, W. & Niu, S. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90, 2700–2710. https://doi.org/10.1890/08-2026.1 (2009).
Stamps, R. H. Production temperatures influence growth and physiology of leatherleaf fern. HortScience 29, 67–70. https://doi.org/10.21273/HORTSCI.29.2.67 (1994).
Munné-Bosch, S. & Peñuelas, J. Drought-induced oxidative stress in strawberry tree (Arbutus Unedo L.) growing in mediterranean field conditions. Plant. Sci. 166, 1105–1110. https://doi.org/10.1016/j.plantsci.2003.12.034 (2004).
Liu, Y., Ren, X. & Jeong, B. R. Night temperature affects the growth, metabolism, and photosynthetic gene expression in astragalus Membranaceus and Codonopsis lanceolata plug seedlings. Plants (Basel). 8, 407. https://doi.org/10.3390/plants8100407 (2019).
Hietz, P. Fern adaptations to xeric environments. In Fern Ecology (eds Mehltreter, K., Walker, L. R. & Sharpe, J. M.) 140–176 (Cambridge University Press, 2010). https://doi.org/10.1017/CBO9780511844898.006
Hasanuzzaman, M., Nahar, K., Alam, M. M. & Fujita, M. Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J. Crop Sci. 6, 1314–1323. https://doi.org/10.1007/s12298-018-0531-6 (2012).
Rudolphi–Skórska, E., Filek, M. & Zembala, M. Physicochemical aspects of reaction of Ozone with galactolipid and galactolipid–Tocopherol layers. J. Membr. Biol. 247, 639–649. https://doi.org/10.1007/s00232-014-9681-9 (2014).
Rudolphi–Skórska, E., Filek, M. & Zembala, M. The effects of the structure and composition of the hydrophobic parts of phosphatidylcholine–containing systems on phosphatidylcholine oxidation by Ozone. J. Membr. Biol. 250, 493–505. https://doi.org/10.1007/s00232-017-9976-8 (2017).
Foyer, C. H. & Noctor, G. Ascorbate and glutathione: the heart of the redox hub. Plant. Physiol. 155, 2–18. https://doi.org/10.1104/pp.110.167569 (2011).
Rivero, R. M., Ruiz, J. M. & Romero, L. M. Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compounds in tomato plants. Plant. Biol. 6, 702–707. https://doi.org/10.1055/s-2004-821293 (2004).
Hu, X. et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant. Growth Regul. 60, 225–235. https://doi.org/10.1007/s10725-009-9436-2 (2010).
Dai, A. H. et al. Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ. Exp. Bot. 79, 1–10. https://doi.org/10.1016/j.envexpbot.2012.01.003 (2012).
Kocsy, G., Szalai, G. & Galiba, G. Effect of heat stress on glutathione biosynthesis in wheat. Acta Biol. Szeged. 46, 71–72 (2002).
Brown, M. R., Abbott, R. J. & Twyford, A. D. The emerging importance of cross ploidy hybridisation and introgression. Mol. Ecol. 33, e17315. https://doi.org/10.1111/mec.17315 (2024).
Filek, M., Zembala, M., Dudek, A., Laggner, P. & Kriechbaum, M. Electric and structural studies of hormone interaction with Chloroplast envelope membranes isolated from vegetative and generative rape. J. Plant. Physiol. 164, 861–867. https://doi.org/10.1016/j.jplph.2006.05.015 (2007).
Stachurska, J. et al. Cold acclimation and deacclimation of winter oilseed rape, with special attention being paid to the role of brassinosteroids. Int. J. Mol. Sci. 25, 6010. https://doi.org/10.3390/ijms25116010 (2024).
Hölzl, G. & Dörmann, P. Chloroplast lipids and their biosynthesis. Annu. Rev. Plant. Biol. 70, 51–81. https://doi.org/10.1146/annurev-arplant-050718-100202 (2019).
Velitchkova, M. et al. Effect of high temperature on dehydration-induced alterations in photosynthetic characteristics of the resurrection plant Haberlea rhodopensis. Photosynthetica 51, 630–640. https://doi.org/10.1007/s11099-013-0063-9 (2013).
Author information
Authors and Affiliations
Contributions
Methodology, formal analysis, investigation, writing - review and editing, visualization – J.O., A.S., B.D. conceptualization, data curation, writing - original draft preparation, supervision: J.O. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Oliwa, J., Sieprawska, A. & Dyba, B. Nighttime warming enhances photosynthetic activity and induces changes in chloroplast membrane structure and antioxidant profile in Platycerium ferns. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37176-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37176-9


