Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
A Citrus medica stem cutting-based platform for rapid screening of therapeutic compounds against Candidatus Liberibacter asiaticus
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 01 February 2026

A Citrus medica stem cutting-based platform for rapid screening of therapeutic compounds against Candidatus Liberibacter asiaticus

  • Beatriz Cristina Pecoraro Sanches1,
  • Talita Alves dos Santos1,
  • Eduardo Silva Gorayeb1,
  • Nelson Arno Wulff1 &
  • …
  • Franklin Behlau1 

Scientific Reports , Article number:  (2026) Cite this article

  • 556 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biological techniques
  • Biotechnology
  • Microbiology
  • Plant sciences

Abstract

Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease worldwide. Developing effective therapies remains a major challenge, as CLas colonizes the host phloem systemically and cannot be cultured in vitro. This study presents a rapid, reproducible, and cost-effective in vivo platform for screening bacteriostatic and bactericidal compounds using CLas-infected citron (Citrus medica (L.) Osbeck) stem cuttings. Among seven citrus genotypes tested, citron stem cuttings exhibited superior rooting performance and uniform vegetative growth. Four propagation protocols were developed and assessed based on the dynamics of rooting and shoot growth, CLas colonization, and the response to oxytetracycline (OTC) treatment. CLas + stem cuttings were treated with OTC via drenching at different developmental root stages. The roots or new vegetative flushes were sampled for bacterial quantification by qPCR. In Protocol 2, in which treatments were applied and sampled 14 and 35 days after planting (DAP) respectively, OTC-treated roots achieved the highest suppression of CLas and a lower incidence of CLas + rooted cuttings compared to non-treated roots. Time-course analysis showed that OTC delayed bacterial establishment in root tissues, with maximal suppression observed at 35 DAP. The proposed protocols simulate the natural progression of systemic infection in citrus plants, allow the assessment of phytotoxicity, and offer a scalable technology that does not underestimate the efficacy of future bactericidal candidates. This platform significantly reduces time and cost compared to traditional seedling or nursery tree experiments and enhances the early-phase screening of antimicrobial compounds. Altogether, this stem cutting-based approach represents a biologically relevant, scalable tool to accelerate therapeutic discovery and strengthen integrated HLB management strategies.

Data availability

The manuscript and supporting files include all data generated during this study.

References

  1. Bové, J. M. Huanglongbing or yellow shoot, a disease of Gondwanan origin: will it destroy citrus worldwide? Phytoparasitica 42, 579–583 (2014).

    Google Scholar 

  2. Bové, J. M. Huanglongbing: A Destructive, Newly-Emerging, Century-Old disease of citrus. Journal Plant. Pathology 88, 7–37 (2006).

  3. Bassanezi, R. B. et al. HLB progress and yield sustainability in mature sweet orange orchards treated with nutritional and elicitor products. PhytoFrontiers™ 4, 213–222 (2024).

    Google Scholar 

  4. Burckhardt, D., Ouvrard, D. & Percy, D. M. An updated classification of the jumping plant-lice (Hemiptera: Psylloidea) integrating molecular and morphological evidence. Eur. J. Taxon. 736, 137–182 (2021).

    Google Scholar 

  5. Ghanim, M. et al. ‘Candidatus Liberibacter asiaticus’ accumulates inside endoplasmic reticulum associated vacuoles in the gut cells of Diaphorina citri. Sci Rep (2017).

  6. Raiol-Junior, L. L., Cifuentes-Arenas, J. C., Cunniffe, N. J., Turgeon, R. & Lopes, S. A. Modeling ‘Candidatus liberibacter asiaticus’ movement within citrus plants. Phytopathology 111, 1711–1719 (2021).

    Google Scholar 

  7. Pandey, S. S., Li, J., Oswalt, C. & Wang, N. Dynamics of ‘Candidatus liberibacter asiaticus’ Growth, concentrations of reactive oxygen Species, and ion leakage in Huanglongbing-Positive sweet orange. Phytopathology 114, 961–970 (2024).

    Google Scholar 

  8. USDA. Citrus summary production, price and value production by county. (2024). https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Summary/Citrus_Summary_Prelim/cit082924.pdf (2025).

  9. Graham, J. H., Bassanezi, R. B., Dawson, W. O. & Dantzler, R. Management of Huanglongbing of citrus: lessons from São. Paulo Fla. 32, 34 (2025).

    Google Scholar 

  10. Bassanezi, R. B. et al. Overview of citrus Huanglongbing spread and management strategies in Brazil. Trop. Plant. Pathol. 45, 251–264 (2020).

    Google Scholar 

  11. Fundecitrus. Inventário das laranjeiras da citricultura brasileira. (2025). https://www.fundecitrus.com.br/noticias/safra-de-laranja-202425-e-encerrada-com-producao-total-de-23087-milhoes-de-caixas/

  12. Fundecitrus. Avalia psilídeo. https://app.powerbi.com/view?r=eyJrIjoiNDE1NmFhYzQtZDBmZi00MjQwLWI4ZGEtOTViNTlkZmYzZDIxIiwidCI6ImUzODU0MTM3LWVmMDMtNDU5Ni05M2QwLWIxM2MyMTk4MTU1ZSJ9. (2025).

  13. Albrecht, U., Tardivo, C., Moreno, G. & de Freitas, J. Systemic Delivery of Oxytetracycline by Drill-Based and Drill-Free Trunk Injection for Treatment of Huanglongbing in Young Sweet Orange Trees. Horticulturae 11, (2025).

  14. Ammar, E. D., Shatters, R. G. & Hall, D. G. Localization of Candidatus liberibacter asiaticus, associated with citrus Huanglongbing Disease, in its psyllid vector using fluorescence in situ hybridization. J. Phytopathol. 159, 726–734 (2011).

    Google Scholar 

  15. Hijaz, F. & Killiny, N. Collection and chemical composition of phloem Sap from Citrus sinensis L. Osbeck (sweet orange). PLoS One 9, e101830 (2014).

  16. Attaran, E. et al. Controlled replication of ‘Candidatus liberibacter asiaticus’ DNA in citrus leaf discs. Microb. Biotechnol. 13, 747–759 (2020).

    Google Scholar 

  17. Merfa, M. V., Naranjo, E., Shantharaj, D. & de la Fuente, L. Growth of ‘Candidatus Liberibacter asiaticus’ in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors. Phytopathology 112, 131–144 (2022).

  18. Killiny, N., Nehela, Y., One Target, T. & Mechanisms The impact of ‘Candidatus liberibacter asiaticus’ and its Vector, Diaphorina citri, on citrus leaf pigments. Mol. Plant-Microbe Interactions ®. 30, 543–556 (2017).

    Google Scholar 

  19. Leonard, M. T., Fagen, J. R., Davis-Richardson, A. G., Davis, M. J. & Triplett, E. W. Complete genome sequence of Liberibacter crescens BT-1. Stand. Genomic Sci. 7, 271–283 (2012).

    Google Scholar 

  20. Jain, M., Munoz-Bodnar, A., Zhang, S. & Gabriel, D. W. A secreted ‘Candidatus liberibacter asiaticus’ Peroxiredoxin simultaneously suppresses both localized and systemic innate immune responses in planta. Mol. Plant Microbe Interact. 31, 1312–1322 (2018).

    Google Scholar 

  21. Irigoyen, S. et al. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus liberibacter spp. Nat. Commun. 11, 5802 (2020).

  22. Akasenov, A. et al. Spatial chemistry of citrus reveals molecules bactericidal to Candidatus liberibacter Asiaticus. Sci. Rep. 14, 20306 (2024).

  23. Singh, K. K. Propagation of citrus species through cutting: A review. J. Med. Plants Stud. 6, 167–172 (2018).

    Google Scholar 

  24. Debnath, S., Hore, J. K., Dhua, R. S. & Sen, S. K. Auxin synergists in the rooting of stem cutting of lemons (Citrus Limon Burm). South. Indian Hort. 34, 123–128 (1986).

    Google Scholar 

  25. Coletta-Filho, H. D. et al. In planta multiplication and graft transmission of ‘Candidatus liberibacter asiaticus’ revealed by real-time PCR. Eur. J. Plant. Pathol. 126, 53–60 (2010).

    Google Scholar 

  26. Zheng, Z. et al. Unusual five copies and dual forms of NrdB in ‘Candidatus liberibacter asiaticus’: biological implications and PCR detection application. Sci. Rep. 6, 39020 (2016).

  27. Cifuentes-Arenas, J. C., de Goes, A., de Miranda, M. P., Beattie, G. A. C. & Lopes, S. A. Citrus flush shoot ontogeny modulates biotic potential of Diaphorina citri. PLoS One 13, e0190563 (2018).

  28. Archer, L., Kunwar, S., Alferez, F., Batuman, O. & Albrecht, U. Trunk injection of Oxytetracycline for Huanglongbing management in mature grapefruit and sweet orange trees. Phytopathology 113, 1010–1021 (2023).

    Google Scholar 

  29. Harrison, B. P. et al. Controlling HLB with oxytetracycline - Patent Invaio, WO2023/240208 A1 (2023).

  30. Ozias-Akins, P. & Vasil, I. K. Callus induction and growth from the mature embryo of triticum aestivum (Wheat). Protoplasma 115, 104–113 (1983).

    Google Scholar 

  31. Teixeira, D. D. C. et al. Citrus Huanglongbing in São Paulo State, brazil: PCR detection of the ‘Candidatus’ liberibacter species associated with the disease. Mol. Cell. Probes. 19, 173–179 (2005).

    Google Scholar 

  32. Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant ONA. Nucleic Acids Research 8, 4321–4326 (1980). https://academic.oup.com/nar/article/8/19/4321/2381063

  33. Martins, E. C., Teixeira, D. C., Coletti, D. A. B. & Wulff, N. A. Multiplex quantitative PCR for the detection of bacteria associated with Huanglongbing ‘Candidatus liberibacter asiaticus,’ ‘ Ca. L. americanus,’ and 16Sr IX group Phytoplasma. Plant. Dis. 109, 623–632 (2025).

    Google Scholar 

  34. R Foundation for Statistical Computing. R Core Team. R: A language and environment for statistical computing. Preprint at. (2025).

  35. Younas, M., Zheng, Z., Atiq, M., Wei, T. & Li, Y. Insights into the Huanglongbing pandemic focusing on transmission biology, virulence factors and multifaceted management strategies. Pest Manage. Science Preprint at. https://doi.org/10.1002/ps.70073 (2025).

    Google Scholar 

  36. Chen, X. D. et al. Feeding behavior and hormoligosis associated with Imidacloprid resistance in Asian citrus psyllid, Diaphorina citri. Insect Sci. 31, 1211–1221 (2024).

    Google Scholar 

  37. B Carpenter, J. Occurrence and inheritance of preformed root primordia in stems of Citron (Citrus medica L). Proc. Am. Soc. Hortic. Sci. 77, 211–218 (1961).

    Google Scholar 

  38. Duran-Vila, N., Ortega, V. & Navarro, L. Morphogenesis and tissue cultures of three citrus species. Plant. Cell. Tissue Organ. Cult. 16, 123–133 (1989).

    Google Scholar 

  39. Karp, D. & Hu, X. The Citron (Citrus medica L.) in China. in Horticultural Reviews 143–196 (Wiley, doi:https://doi.org/10.1002/9781119431077.ch5. (2018).

  40. Bowman, K. D. & Joubert, J. Citrus rootstocks. in The Genus Citrus 105–127Elsevier, (2020). https://doi.org/10.1016/B978-0-12-812163-4.00006-1

  41. Ghorbel, R., Navarro, L. & Duran-Vila, N. Morphogenesis and regeneration of whole plants of grapefruit (Citrus paradisi), sour orange (C aurantium) and Alemow (C. macrophylla). J. Hortic. Sci. Biotechnol. 73, 323–327 (1998).

    Google Scholar 

  42. Platt, R. G. and O. K. W. The propagation of citrus. in The Citrus Industry. (ed Reuther, W.) 1–47, (Bekerly: University of California Press, (1973).

    Google Scholar 

  43. Wang, N. & Trivedi, P. Citrus huanglongbing: A newly relevant disease presents unprecedented challenges. Phytopathology 103, 652–665 (2013).

    Google Scholar 

  44. Hu, J. & Wang, N. Evaluation of the Spatiotemporal dynamics of Oxytetracycline and its control effect against citrus Huanglongbing via trunk injection. Phytopathology 106, 1495–1503 (2016).

    Google Scholar 

  45. Vincent, C. I., Hijaz, F., Pierre, M. & Killiny, N. Systemic uptake of Oxytetracycline and streptomycin in Huanglongbing-Affected citrus groves after foliar application and trunk injection. Antibiotics 11, 1092 (2022).

    Google Scholar 

  46. Batuman, O. et al. The use and impact of antibiotics in plant agriculture: A review. Phytopathology 114, 885–909 (2024).

    Google Scholar 

  47. Lopes, S. A. & Cifuentes-Arenas, J. C. Protocol for successful transmission of ‘Candidatus liberibacter asiaticus’ from citrus to citrus using Diaphorina citri. Phytopathology 111, 2367–2374 (2021).

    Google Scholar 

  48. Pang, Z. et al. Citrus CsACD2 is a target of Candidatus liberibacter Asiaticus in Huanglongbing disease. Plant. Physiol. 184, 792–805 (2020).

    Google Scholar 

  49. Huang, C. Y. et al. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proceedings of the National Academy of Sciences 118, (2021).

  50. Rao, W. et al. ZnO quantum Dots reduce acquisition of Huanglongbing pathogen by Diaphorina citri. Pest Manag Sci. 81, 2712–2721 (2025).

    Google Scholar 

  51. Bendix, C. & Lewis, J. D. The enemy within: phloem-limited pathogens. Mol. Plant. Pathol. 19, 238–254 (2018).

    Google Scholar 

  52. Kruse, A., Fleites, L. A. & Heck, M. Lessons from one fastidious bacterium to another: what can we learn about liberibacter species from xylella fastidiosa. Insects 10, 300 (2019).

    Google Scholar 

  53. Pandey, S. S., Hendrich, C., Andrade, M. O. & Wang, N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. Phytopathology 112, 55–68 (2022).

  54. Pandey, S. S., Vasconcelos, N. C., Wang, N. & F. & Spatiotemporal dynamics of ‘Candidatus liberibacter asiaticus’ colonization inside citrus plant and Huanglongbing disease development. Phytopathology 111, 921–928 (2021).

    Google Scholar 

  55. Wei, H., Tang, M. & Xu, X. Mechanism of uptake, accumulation, transport, metabolism and phytotoxic effects of pharmaceuticals and personal care products within plants: A review. Sci. Total Environ. 892, 164413 (2023).

    Google Scholar 

  56. Killiny, N. et al. Tracing penicillin movement in citrus plants using Fluorescence-Labeled penicillin. Antibiotics 8, 262 (2019).

    Google Scholar 

  57. Enstone, D. E., Peterson, C. A. & Ma, F. Root endodermis and exodermis: Structure, Function, and responses to the environment. J. Plant. Growth Regul. 21, 335–351 (2002).

    Google Scholar 

  58. Péret, B., Larrieu, A. & Bennett, M. J. Lateral root emergence: a difficult birth. J. Exp. Bot. 60, 3637–3643 (2009).

    Google Scholar 

  59. Higgins, S. A. et al. Plant-Derived, Nodule-Specific Cysteine-Rich peptides as a novel source of biopesticides for controlling citrus greening disease. Phytopathology 114, 971–981 (2024).

    Google Scholar 

  60. Johnson, E. G., Wu, J., Bright, D. B. & Graham, J. H. Association of ‘Candidatus liberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant. Pathol. 63, 290–298 (2014).

    Google Scholar 

  61. Blaustein, R. A., Lorca, G. L. & Teplitski, M. Challenges for managing Candidatus liberibacter spp. (Huanglongbing disease Pathogen): current control measures and future directions. Phytopathology 108, 424–435 (2018).

    Google Scholar 

  62. Zhang, M. et al. Screening molecules for control of citrus Huanglongbing using an optimized regeneration system for Candidatus liberibacter Asiaticus infected periwinkle (Catharanthus roseus) cuttings. Phytopathology 100, 239–245 (2010).

    Google Scholar 

  63. Rhodes, B. H. et al. Direct Infusion Device for Molecule Delivery in Plants. Journal of Visualized Experiments (2023). (2023).

  64. Kennedy, J. P. et al. A perspective on current therapeutic molecule screening methods against ‘Candidatus liberibacter asiaticus’, the presumed causative agent of citrus Huanglongbing. Phytopathology 113, 1171–1179 (2023).

    Google Scholar 

  65. Louzada, E., Vazquez, O., Chavez, S., Sétamou, M. & Kunta, M. Optimization of VqPCR for reliable detection of viable candidatus liberibacter Asiaticus in citrus. HortScience 57, 692–697 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors thank Elaine C. Martins for sharing the quantification curve data for CLas titer estimation, and Isabela V. Primiano for the contribution to Figure 2.

Funding

B. C. P. S. received a grant from Fundecitrus ID: 04 3119. N. A. W. has a CNPq fellowship (306365/2024-3).

Author information

Authors and Affiliations

  1. Fund for Citrus Protection, Research and Development Department, Araraquara, 14807-040, Brazil

    Beatriz Cristina Pecoraro Sanches, Talita Alves dos Santos, Eduardo Silva Gorayeb, Nelson Arno Wulff & Franklin Behlau

Authors
  1. Beatriz Cristina Pecoraro Sanches
    View author publications

    Search author on:PubMed Google Scholar

  2. Talita Alves dos Santos
    View author publications

    Search author on:PubMed Google Scholar

  3. Eduardo Silva Gorayeb
    View author publications

    Search author on:PubMed Google Scholar

  4. Nelson Arno Wulff
    View author publications

    Search author on:PubMed Google Scholar

  5. Franklin Behlau
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.C.P.S. and F.B. designed research. E.S.G. analyzed data. B.C.P.S., T.A.S. performed research. N.A.W. provided *C. medica* plants and reagents. B.C.P.S wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Franklin Behlau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecoraro Sanches, B.C., dos Santos, T.A., Gorayeb, E.S. et al. A Citrus medica stem cutting-based platform for rapid screening of therapeutic compounds against Candidatus Liberibacter asiaticus. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37186-7

Download citation

  • Received: 03 October 2025

  • Accepted: 20 January 2026

  • Published: 01 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37186-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Huanglongbing
  • Phloem-limited bacteria
  • Antibacterial therapy
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research