Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Biogenic synthesis, characterization, and antibacterial evaluation of silver nanoparticles synthesized from aqueous seed extract of Dolichos lablab
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

Biogenic synthesis, characterization, and antibacterial evaluation of silver nanoparticles synthesized from aqueous seed extract of Dolichos lablab

  • Gezahegn Tesfaye Bekele1,
  • Desta Shumuye Meshesha1,
  • Tsegaye Tesfaye2,
  • Ayalew Temesgen Wodajo1,
  • Melesse Ababay Assege1,
  • Getaneh Worku Moges3,
  • Hailemichael Tegenu Gebrie1,
  • Gizachew Mulugeta Manahelohe1,
  • Atnafu Guadie Assefa1,
  • Molla Tefera Negash1 &
  • …
  • Aderaw Anteneh Belew4 

Scientific Reports , Article number:  (2026) Cite this article

  • 469 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biological techniques
  • Biotechnology
  • Chemistry
  • Materials science
  • Microbiology
  • Nanoscience and technology

Abstract

Currently, green synthesis of AgNPs is an emerging technology over other conventional methods due to its low cost, energy efficiency, non-hazardousness, and environmental friendliness. The present study focuses on the green synthesis, characterization, and antibacterial activities of synthesized AgNPs using Dolichos lablab aqueous seed extract. Synthesis of AgNPs was done by using AEDLL AgNO3 solution at 70 ℃. The antibacterial activity was determined using the agar well diffusion method. Formation of AgNPs was confirmed by the appearance of the red brown color of the mixture and further confirmed by spectral analysis; meanwhile, parameters affecting the formation of AgNPs were also investigated. The optimum stirring time for AgNPs synthesis was found to be 45 min with 30 mL of 1mM AgNO3 solution and 15 mL AEDLL, which was favorable for the reduction of AgNPs. The UV-Vis spectrum of the optimized AgNPs shows a peak at 400 nm. FT-IR spectrum analysis indicates the presence of hydroxyl (-OH) functional groups in the synthesized AgNPs. The XRD pattern of AgNPs showed a face-centered cubic structure with an average particle size of 15.67 nm. The antibacterial activity revealed that Staphylococcus aureus was more susceptible to the treatment than Escherichia coli.

Data availability

The data will be available upon request.

References

  1. Belew, A. A. & Assege, M. A. Solvothermal synthesis of metal oxide nanoparticles: a review of applications, challenges, and future perspectives. Results Chem. 16, 102438. https://doi.org/10.1016/j.rechem.2025.102438 (2025).

    Google Scholar 

  2. Alharbi, N. S., Alsubhi, N. S. & Felimban, A. I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Radiat. Res. Appl. Sci. 15(3), 109–124. https://doi.org/10.1016/j.jrras.2022.06.012 (2022).

    Google Scholar 

  3. Gebrie, H. T. et al. Biosynthesis and characterization of copper oxide nanoparticles from Plumbago Zeylanica leaf extract for antibacterial and antioxidant activities. Sci. Rep. 15 (1), 1–16 (2025).

    Google Scholar 

  4. Jyoti, P. et al. Industrial Crops & Products A facile green synthesis of ultra small silver nanoparticles using aqueous branch extract of Dipterocarpus retusus (Hollong) promoting catalytic degradation of organic pollutants for environmental remediation. Ind. Crop Prod. 235, 121689. https://doi.org/10.1016/j.indcrop.2025.121689 (2025).

    Google Scholar 

  5. Yadav, V. et al. Green synthesis of silver nanoparticles from clematis gouriana leaf extract: physicochemical characterization and antibacterial activity determination for treatment of blood stream infections. Microbe 5, 100197 (2024).

    Google Scholar 

  6. Alamier, W. M. et al. Green synthesis of silver nanoparticles using acacia ehrenbergiana plant cortex extract for efficient removal of Rhodamine B cationic dye from wastewater and the evaluation of antimicrobial activity. ACS Omega. 8 (21), 18901–18914 (2023).

    Google Scholar 

  7. Herrera-Marín, P. et al. Green synthesis of silver nanoparticles using aqueous extract of the leaves of fine aroma cocoa theobroma Cacao Linneu (Malvaceae): optimization by electrochemical techniques. Electrochim. Acta 447, 0–8 (2023).

    Google Scholar 

  8. Alampally, B. B. et al. Green synthesis of silver nanoparticles using Azadirachta indica (Neem) fruit pulp extract and their antioxidant, antibacterial, and anticancer activity. Sustain. Chem. Environ. 11, 100282 (2025).

    Google Scholar 

  9. Sadeghi-Kiakhani, M., Hashemi, E. & Norouzi, M. M. Valorization of pistachio (Pistacia vera L.) peel extract as an agricultural waste for green fabrication of bio-silver nanoparticles on cellulosic fabrics. Ind. Crops Prod. 223, 120139. https://doi.org/10.1016/j.indcrop.2024.120139 (2025).

    Google Scholar 

  10. Mehdi Zabihi, M., Eghbaliferiz, S., Khorashadizadeh, M., Mortazavi-Derazkola, S. & Yousefi, M. Green synthesis of non-toxic silver nanoparticles using Salvia tebesana Bunge extract: Optimization, cytotoxicity, and antibacterial activities. Results Chem. 7, 101510. https://doi.org/10.1016/j.rechem.2024.101510 (2024).

    Google Scholar 

  11. Shereen, M. A. et al. Plant extract preparation and green synthesis of silver nanoparticles using Swertia chirata: Characterization and antimicrobial activity against selected human pathogens. Heliyon 10(6), e28038. https://doi.org/10.1016/j.heliyon.2024.e28038 (2024).

    Google Scholar 

  12. Suriyakala, G. et al. Phytosynthesis of silver nanoparticles from Jatropha integerrima Jacq. flower extract and their possible applications as antibacterial and antioxidant agent. Saudi J. Biol. Sci. 29(2), 680–688 (2022).

    Google Scholar 

  13. Belew, A. A., Gebre, S. H., Assege, M. A., Meshesha, D. S. & Ayana, M. T. Biosynthesis of gold nanoparticle: current applications, challenges, and future prospects. Results Chem. 18, 102859 (2025).

    Google Scholar 

  14. Song, W. C., Kim, B., Park, S. Y., Park, G. & Oh, J. W. Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation. Arab. J. Chem. 15(9), 104056 (2022).

    Google Scholar 

  15. Taleb Safa, M. A. & Koohestani, H. Green synthesis of silver nanoparticles with green tea extract from silver recycling of radiographic films. Results Eng. 21, 101808 (2024).

    Google Scholar 

  16. Budhathoki, S. et al. Green synthesis of silver nanoparticles from Brassaiopsis hainla extract for the evaluation of antibacterial and anticorrosion properties. Heliyon 10(15), e35642. https://doi.org/10.1016/j.heliyon.2024.e35642 (2024).

    Google Scholar 

  17. Suriyakala, G. et al. Plumeria pudica Jacq. flower extract - mediated silver nanoparticles: Characterization and evaluation of biomedical applications. Inorg. Chem. Commun. 126, 108470. https://doi.org/10.1016/j.inoche.2021.108470 (2021).

    Google Scholar 

  18. Liaqat, N., Jahan, N., Khalil-ur-Rahman, Anwar, T. & Qureshi, H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front. Chem. 10, 1–13 (2022).

    Google Scholar 

  19. Alassadi, N. M., Al-ghizzawi, G. J., Amshawee, A. M. & Ali, R. Next Nanotechnology Antibacterial, antioxidant, and anticancer activities of green synthesized silver nanoparticles using aqueous extract of Justicia brandegeana. Next Nanotechnol. 8, 100275. https://doi.org/10.1016/j.nxnano.2025.100275 (2025).

    Google Scholar 

  20. Alshameri, A. W., Owais, M., Altaf, I. & Farheen, S. Rumex nervosus mediated green synthesis of silver nanoparticles and evaluation of its in vitro antibacterial, and cytotoxic activity. OpenNano 8, 100084. https://doi.org/10.1016/j.onano.2022.100084 (2022).

    Google Scholar 

  21. Uddin, A. K. M. R., Siddique, M. A. B., Rahman, F., Ullah, A. K. M. A. & Khan, R. Cocos nucifera leaf extract mediated green synthesis of silver nanoparticles for enhanced antibacterial activity. J. Inorg. Organomet. Polym. Mater. 30 (9), 3305–3316 (2020).

    Google Scholar 

  22. Vidya Sagar, P. S. R., Ramadevi, D., Basavaiah, K. & Botsa, S. M. Green synthesis of silver nanoparticles using aqueous leaf extract of Saussurea obvallata for efficient catalytic reduction of nitrophenol, antioxidant, and antibacterial activity. Water Sci. Eng. 17(3), 274–282 (2024).

    Google Scholar 

  23. Hermanto, D. et al. Bio-mediated electrochemically synthesis of silver nanoparticles using green tea (Camellia sinensis) leaves extract and their antibacterial activity. South African J. Chem. Eng. 47, 136–141 (2024).

    Google Scholar 

  24. Hashemi, Z., Mizwari, Z. M., Mohammadi-Aghdam, S., Mortazavi-Derazkola, S. & Ali Ebrahimzadeh, M. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity: Sustainable green. Arab. J. Chem. 15(1), 103525. https://doi.org/10.1016/j.arabjc.2021.103525 (2022).

    Google Scholar 

  25. Sarmin, M., Gurung, S., Sarkar, S., Das, S. & Hoda, M. Photocatalysis-enhanced synthesis and stabilization of silver nanoparticles by methanol-based phytochemicals extract of Trigonella foenum-graecum seeds. JCIS Open 15, 100116. https://doi.org/10.1016/j.jciso.2024.100116 (2024).

    Google Scholar 

  26. Hegde, K. A brief review on botanical Description, medicinal uses and Pharmacological actions of lablab purpureus. Int. J. Res. Rev. 9, 230–236 (2022).

    Google Scholar 

  27. Chetia, S., Kumari, T., Nickhil, C. & Deka, S. C. A comprehensive review on the nutritional, medicinal, and functional potential of Dolichos lablab. Discov Food 5, 1–18 (2025).

    Google Scholar 

  28. Bhat, S. S. et al. Lablab purpureus phytochemicals demonstrate potential anticancer activity as evidenced through experimental and computational analysis. Sci. Rep. 15, 1–22 (2025).

    Google Scholar 

  29. Kahsay, M. H. et al. Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-Nitrophenol, antimicrobial and anticancer activities. OpenNano 3 (March), 28–37 (2018).

    Google Scholar 

  30. Ulug, B., Haluk Turkdemir, M., Cicek, A. & Mete, A. Role of irradiation in the green synthesis of silver nanoparticles mediated by Fig (Ficus carica) leaf extract. Spectrochim Acta - Part. Mol. Biomol. Spectrosc. 135, 153–161 (2015).

    Google Scholar 

  31. Wu, C., Peng, J., Song, T. & Fu, M. Green synthesis approach: Utilizing chrysanthemum extract as reducing and stabilizing agent for the fabrication of silver nanoparticles and their antimicrobial properties study. Alexandria Eng. J. 96, 149–155 (2024).

    Google Scholar 

  32. Dada, A. O. et al. Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using tithonia diversifolia. PeerJ 6, 1–17 (2018).

    Google Scholar 

  33. Wan Mat Khalir, W. K. A. et al. Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Front. Chem. 8, 1–15 (2020).

    Google Scholar 

  34. Rose, G. K., Soni, R., Rishi, P. & Soni, S. K. Optimization of the biological synthesis of silver nanoparticles using penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green. Process. Synth. 8 (1), 144–156 (2019).

    Google Scholar 

  35. Ullah, Z., Atiq, S. & Naseem, S. Indexing the diffraction patterns and investigating the crystal structure of Pb-doped strontium ferrites. J. Sci. Res. 5 (2), 235–244 (2013).

    Google Scholar 

  36. Hoffman, R. Potent Inhibition of breast cancer cell lines by the isoflavonoid kievitone: comparison with genistein. Biochem. Biophys. Res. Commun. 211, 600–606 (1995).

    Google Scholar 

  37. Grayer, R. J. & Kokubun, T. Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56 (3), 253–263 (2001).

    Google Scholar 

  38. Neelam, N. et al. Biogenic synthesis of silver nanoparticles using Zaleya Pentandra and investigation of their biological activities. Sci. Rep. 15 (1), 1–15 (2025).

    Google Scholar 

  39. Majeed, H., Iftikhar, T., Ashir Nadeem, M. & Altaf Nazir, M. Green synthesis of Eucalyptus globulus zinc nanoparticles and its use in antimicrobial insect repellent paint formulation in bulk industrial production. Heliyon 10(2), e24467. https://doi.org/10.1016/j.heliyon.2024.e24467 (2024).

    Google Scholar 

  40. Sivakami, S. et al. Green synthesis of silver nanoparticles from Muntingia calabura fruits extract and its anticancer, cytotoxic, antioxidant, antibacterial and photocatalytic activity. Chem. Inorg. Mater. 7, 100112. https://doi.org/10.1016/j.cinorg.2025.100112 (2025).

    Google Scholar 

  41. Chandraker, S. K., Ghosh, M. K., Lal, M. & Shukla, R. A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications. Nano Express 2(2), 022008. https://doi.org/10.1088/2632-959X/ac0355 (2021).

    Google Scholar 

  42. Wang, G., Shi, C., Zhao, N. & Du, X. Synthesis and characterization of ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition. Mater. Lett. 61 (18), 3795–3797 (2007).

    Google Scholar 

  43. Widatalla, H. A. et al. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 4 (3), 911–915 (2022).

    Google Scholar 

  44. Elmehalawy, N. G., Zaky, M. M. M. & Eid, A. M. Eco-friendly synthesis of silver nanoparticles: multifaceted activities. Sci. Rep. 15 (37349), 1–22 (2025).

    Google Scholar 

  45. Priyashree, S., Jha, S. & Pattanayak, S. A review on Cressa cretica Linn.: A halophytic plant. Pharmacogn Rev. 4 (8), 161–166 (2010).

    Google Scholar 

  46. Nayagam, V., Gabriel, M. & Palanisamy, K. Green synthesis of silver nanoparticles mediated by coccinia grandis and phyllanthus emblica: A comparative comprehension. Appl. Nanosci. 8 (3), 205–219 (2018).

    Google Scholar 

  47. Mekonnen, K. D. Fourier transform infrared spectroscopy as a tool for identifying the unique characteristic bands of lipid in oilseed components: confirmed via Ethiopian Indigenous desert date fruit. Heliyon 9 (4), e14699 (2023).

    Google Scholar 

  48. Gowry, J., Darmalingham, V. & Prema, A. Phytochemical screening by FTIR spectroscopic analysis of leaf and stem extracts of Wedelia biflora. Int. J. Nano Corr. Sci. Engg. 2 (5), 322–334 (2015).

    Google Scholar 

  49. Goebbert, D. J. et al. Infrared spectroscopy of the microhydrated nitrate ions 3 (H 2O). J. Phys. Chem. A. 113 (26), 7584–7592 (2009).

    Google Scholar 

  50. Trivedi, M. K., Dahryn Trivedi, A. B. & Khemraj Bairwa, H. S. Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characterization of Biofield Treated Salicylic Acid and Sparfloxacin. Nat. Prod. Chem. Res. 03(05), 1000186 (2015).

    Google Scholar 

  51. Odo, I. F., Ezeanyika, L. U. S., Ogugua, V. N., Joshua, P. E. & I.U O. FTIR and GC-MS spectroscopic analysis of methanol and chloroform extracts of Brenania Brieyi root bark. Am. J. Res. Commun. 5 (2013), 44–54 (2017).

    Google Scholar 

  52. Palacio, S. et al. Gypsophile chemistry unveiled: Fourier transform infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One 9(9), e107285 (2014).

    Google Scholar 

  53. Serunting, M. A. et al. Facile sunlight-irradiation mediated green synthesis of highly stable silver nanoparticles using Archidendron bubalinum pods extract for antibacterial activity application. Case Stud. Chem. Environ. Eng. 10, 100811 (2024).

    Google Scholar 

  54. Jahan, G. et al. Phytochemical profiling and evaluation of antimicrobial properties of Papilionanthe teres leaves extracts and their green synthesized silver nanoparticles. The Microbe 8, 100475 (2025).

    Google Scholar 

  55. Elias, E. M., Meganathan, G. & Pappuswamy, M. Green synthesis, characterization, and biological applications of silver nanoparticles from Pachira glabra leaf extract. The Microbe 7, 100413. https://doi.org/10.1016/j.microb.2025.100413 (2025).

    Google Scholar 

  56. Ishida, T. & Makino, T. Microwave dielectric relaxation of bound water to silica, alumina, and silica-alumina gel suspensions. J. Colloid Interface Sci. 212 (1), 144–151 (1999).

    Google Scholar 

  57. Giordanengo, T. et al. Correction of moisture effects on near infrared calibration for the analysis of phenol content in eucalyptus wood extracts. Ann. Sci. 65(8), 1 (2008).

    Google Scholar 

  58. Bharadwaj, K. K. et al. Green synthesis of silver nanoparticles using diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-np). Nanomaterials 11(8), 1999 (2021).

    Google Scholar 

  59. Revathi, S. et al. Green synthesis and characterization of silver nanoparticles (AgNP) using Acacia nilotica plant extract and their anti-bacterial activity. Food Chem. Adv. 4, 100680. https://doi.org/10.1016/j.focha.2024.100680 (2024).

    Google Scholar 

  60. Ali, M. H. et al. Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS Omega. 8 (31), 28133–28142 (2023).

    Google Scholar 

  61. Sheny, D. S., Mathew, J. & Philip, D. Phytosynthesis of Au, ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of anacardium occidentale. Spectrochim Acta - Part. Mol. Biomol. Spectrosc. 79 (1), 254–262 (2011).

    Google Scholar 

  62. Velu, M. et al. Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. 3 Biotech. 7 (2), 1–9 (2017).

    Google Scholar 

  63. Zsembik, B. A. Health issues in Latino families and households. Handb. Fam Heal Interdiscip Perspect. 6 (20), 40–61 (2006).

    Google Scholar 

  64. Keat, C. L., Aziz, A., Eid, A. M. & Elmarzugi, N. A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess. 2(1), 47 (2015).

    Google Scholar 

  65. Vidhu, V. K., Aromal, S. A. & Philip, D. Green synthesis of silver nanoparticles using macrotyloma uniflorum. Spectrochim Acta - Part. Mol. Biomol. Spectrosc. 83 (1), 392–397 (2011).

    Google Scholar 

  66. Chou, K. & Sen, Ren, C. Y. Synthesis of nanosized silver particles by chemical reduction method. Mater. Chem. Phys. 64 (3), 241–246 (2000).

    Google Scholar 

  67. Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275 (1), 177–182 (2004).

    Google Scholar 

  68. Singh, P., Kim, Y. J., Zhang, D. & Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34 (7), 588–599 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Gondar for providing laboratory facilities and Jimma University for access to characterization facilities.

Author information

Authors and Affiliations

  1. Department of Chemistry College of Natural and Computational Sciences , University of Gondar , 196, Gondar, Ethiopia

    Gezahegn Tesfaye Bekele, Desta Shumuye Meshesha, Ayalew Temesgen Wodajo, Melesse Ababay Assege, Hailemichael Tegenu Gebrie, Gizachew Mulugeta Manahelohe, Atnafu Guadie Assefa & Molla Tefera Negash

  2. Department of Chemistry College of Natural and Computational Sciences , Jima University , Jima, Ethiopia

    Tsegaye Tesfaye

  3. Department of Chemistry College of Natural and Computational Sciences , Debark University , Debark, Ethiopia

    Getaneh Worku Moges

  4. Department of Chemistry College of Natural and Computational Sciences , Jigjiga University , 1020, Jigjiga, Ethiopia

    Aderaw Anteneh Belew

Authors
  1. Gezahegn Tesfaye Bekele
    View author publications

    Search author on:PubMed Google Scholar

  2. Desta Shumuye Meshesha
    View author publications

    Search author on:PubMed Google Scholar

  3. Tsegaye Tesfaye
    View author publications

    Search author on:PubMed Google Scholar

  4. Ayalew Temesgen Wodajo
    View author publications

    Search author on:PubMed Google Scholar

  5. Melesse Ababay Assege
    View author publications

    Search author on:PubMed Google Scholar

  6. Getaneh Worku Moges
    View author publications

    Search author on:PubMed Google Scholar

  7. Hailemichael Tegenu Gebrie
    View author publications

    Search author on:PubMed Google Scholar

  8. Gizachew Mulugeta Manahelohe
    View author publications

    Search author on:PubMed Google Scholar

  9. Atnafu Guadie Assefa
    View author publications

    Search author on:PubMed Google Scholar

  10. Molla Tefera Negash
    View author publications

    Search author on:PubMed Google Scholar

  11. Aderaw Anteneh Belew
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Gezahegn Tesfaye Bekele and Desta Shumuye Meshesha: Conceptualization, Data curation, Formal analysis, Writing – original draft, Writing – review & editing. Tsegaye Tesfaye, Ayalew Temesgen Wodajo, and Melesse Ababay Assege: Formal analysis, Validation, Writing – original draft, Writing – review & editing. Getaneh Worku Moges, Hailemiceal Tegenu Gebrie, Gizachew Mulugeta Manahelohe, and Atnafu Guadie Assefa, Molla Tefera Negash, Aderaw Anteneh Belew: Validation, Data curation, Formal analysis, Supervision.

Corresponding author

Correspondence to Desta Shumuye Meshesha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The plant material was collected from a home garden with the owners’ prior oral permissions.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekele, G.T., Meshesha, D.S., Tesfaye, T. et al. Biogenic synthesis, characterization, and antibacterial evaluation of silver nanoparticles synthesized from aqueous seed extract of Dolichos lablab. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37265-9

Download citation

  • Received: 17 November 2025

  • Accepted: 20 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37265-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Antibacterial activity
  • Green synthesis
  • Dolichos lablab seed
  • Silver nanoparticles
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research