Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Synthesis of 2D nickel MOF nanosheets incorporated in thin film nanocomposite membranes for efficient reverse osmosis desalination
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 28 January 2026

Synthesis of 2D nickel MOF nanosheets incorporated in thin film nanocomposite membranes for efficient reverse osmosis desalination

  • Abdullateef Dauda1,
  • Wail Falath1,2,
  • Abdul Waheed2 &
  • …
  • Aasif Helal3 

Scientific Reports , Article number:  (2026) Cite this article

  • 206 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Materials science
  • Nanoscience and technology

Abstract

The recent development of fabricating thin film nanocomposite (TFN) membranes by utilizing two-dimensional (2D) metal–organic frameworks (MOFs) nanosheets has drawn significant attention due to their potential to enhance membrane performance. The current work focuses on synthesizing 2D nickel-based MOF nanosheets by exfoliating their 3D pillared layered MOF counterpart and then decorating the polyamide (PA) layer of the TFN membranes with different concentrations of the nanosheets. All modified TFN membranes exhibited improved pure water flux (> 50% for the TFN membrane with the highest nanosheet concentration, N-3 with 0.015% 2D-Ni MOF nanosheet) while retaining excellent salt rejection for both monovalent (NaCl) and divalent salts (> 95% for the TFN membrane with the highest nanosheet concentration) compared to the pristine MPD/TMC membrane. Remarkable anti-fouling properties against a 200 ppm bovine serum albumin (BSA) protein foulant, evidenced by its substantial water flux recovery ratio of 91.7% were observed by the modified TFN membranes. Therefore, this current approach of modifying the active PA layer of TFN membranes with 2D MOF nanosheets is quite effective and efficient for fabricating efficient desalination membranes.

Data availability

Data is available upon request.

References

  1. MXenes and other 2D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S1383586622003379.

  2. Boretti, A. & Rosa, L. Reassessing the projections of the world water development report. npj Clean Water 2, 15 (2019).

    Google Scholar 

  3. Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A.,. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 28, 222–239 (2019).

    Google Scholar 

  4. Tayeh, Y. A. A comprehensive review of reverse osmosis desalination: Technology, water sources, membrane processes, fouling, and cleaning. Desalin. Water Treat. 320, 100882 (2024).

    Google Scholar 

  5. Aimani, S. E. Modeling of Reverse Osmosis Water Desalination Powered by Photovoltaic Solar Energy. Green Energy Environ. Technol. https://doi.org/10.5772/geet.15 (2023).

    Google Scholar 

  6. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0043135420300932.

  7. Khorshidi, B., Thundat, T., Fleck, B. A. & Sadrzadeh, M. A Novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci. Rep. 6, 22069 (2016).

    Google Scholar 

  8. Reverse osmosis membrane fabrication and modification technologies and future trends: A review—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S000186861930260X.

  9. Jiang, S., Li, Y. & Ladewig, B. P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 595, 567–583 (2017).

    Google Scholar 

  10. Werber, J. R., Deshmukh, A., & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3 (4), 112–120 https://doi.org/10.1021/acs.estlett.6b00050 (2016).

    Google Scholar 

  11. Yang, Z. et al. A critical review on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent developments, and environmental applications. Environ. Sci. Technol. 54 (24), 15563–15583 https://doi.org/10.1021/acs.est.0c05377 (2020).

    Google Scholar 

  12. Jeong, B.-H. et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007).

    Google Scholar 

  13. Taghipour, S., Khadir, A. & Taghipour, M. Carbon Nanotubes Composite Membrane for Water Desalination. In Inamuddin & Khan, A. (eds.) Sustainable Materials and Systems for Water Desalination. 163–184 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-72873-1_10.

  14. Wan Azelee, I. et al. Enhanced desalination of polyamide thin film nanocomposite incorporated with acid treated multiwalled carbon nanotube-titania nanotube hybrid. Desalination 409, 163–170 (2017).

    Google Scholar 

  15. Ali, M. E. A., Wang, L., Wang, X. & Feng, X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386, 67–76 (2016).

    Google Scholar 

  16. Wu, X. et al. Microporous carbon from fullerene impregnated porous aromatic frameworks for improving the desalination performance of thin film composite forward osmosis membranes. J. Mater. Chem. A 6, 11327–11336 (2018).

    Google Scholar 

  17. Rajakumaran, R., Kumar, M. & Chetty, R. Morphological effect of ZnO nanostructures on desalination performance and antibacterial activity of thin-film nanocomposite (TFN) membrane. Desalination 495, 114673 (2020).

    Google Scholar 

  18. Rajakumaran, R. et al. Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination 467, 245–256 (2019).

    Google Scholar 

  19. Al Mayyahi, A. TiO2 polyamide thin film nanocomposite reverses osmosis membrane for water desalination. Membranes 8, 66 (2018).

    Google Scholar 

  20. Mayyahi, A. A. & Asadi, H. A. Thin film nanocomposite membrane impregnated with clay nanoparticles for water desalination. Saudi J. Civil Eng. 1 (1), 24–29 (2017).

    Google Scholar 

  21. Wei, Y. et al. Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. J. Membr. Sci. 636, 119586 (2021).

    Google Scholar 

  22. Kim, E.-S., Hwang, G., Gamal El-Din, M. & Liu, Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 394–395, 37–48 (2012).

    Google Scholar 

  23. Tang, C. Y. et al. Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 52, 10215–10223 (2018).

    Google Scholar 

  24. Li, D., Yan, Y. & Wang, H. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 61, 104–155 (2016).

    Google Scholar 

  25. Zhang, Y., Feng, X., Yuan, S., Zhou, J. & Wang, B. Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorg. Chem. Front. 3, 896–909 (2016).

    Google Scholar 

  26. Dutta, S. et al. Metal-organic frameworks for water desalination. Adv. Funct. Mater. 34, 2304790 (2024).

    Google Scholar 

  27. Bonnett, B. L. et al. PCN-222 Metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes. ACS Appl. Mater. Interfaces 12, 15765–15773 (2020).

    Google Scholar 

  28. Xu, Y. et al. Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101 (Cr) Nanoparticles for reverse osmosis application. Materials 9, 870 (2016).

    Google Scholar 

  29. Kadhom, M., Hu, W. & Deng, B. Thin film nanocomposite membrane filled with metal-organic frameworks UiO-66 and MIL-125 Nanoparticles for water desalination. Membranes 7, 31 (2017).

    Google Scholar 

  30. Duan, Y., Li, L., Shen, Z., Cheng, J. & He, K. Engineering metal-organic-framework (MOF)-based membranes for gas and liquid separation. Membranes 13, 480 (2023).

    Google Scholar 

  31. Yang, Y., Goh, K., Wang, R. & Bae, T.-H. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem. Commun. 53, 4254–4257 (2017).

    Google Scholar 

  32. Li, Y. et al. Thermally reduced nanoporous graphene oxide membrane for desalination. Environ. Sci. Technol. 53, 8314–8323 (2019).

    Google Scholar 

  33. Yuan, S. et al. Minimizing non-selective nanowrinkles of reduced graphene oxide laminar membranes for enhanced NaCl rejection. Environ. Sci. Technol. Lett. 7, 273–279 (2020).

    Google Scholar 

  34. Wang, Z. et al. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017).

    Google Scholar 

  35. Liu, Y. et al. Water desalination across multilayer graphitic carbon nitride membrane: Insights from non-equilibrium molecular dynamics simulations. Carbon 140, 131–138 (2018).

    Google Scholar 

  36. Gao, H. et al. Rational design and strain engineering of nanoporous boron nitride nanosheet membranes for water desalination. J. Phys. Chem. C 121, 22105–22113 (2017).

    Google Scholar 

  37. Jafarzadeh, R., Azamat, J., Erfan-Niya, H. & Hosseini, M. Molecular insights into effective water desalination through functionalized nanoporous boron nitride nanosheet membranes. Appl. Surf. Sci. 471, 921–928 (2019).

    Google Scholar 

  38. Karahan, H. E. et al. MXene materials for designing advanced separation membranes. Adv. Mater. 32, 1906697 (2020).

    Google Scholar 

  39. Li, F., Liu, T. D., Xie, S., Guan, J. & Zhang, S. 2D metal-organic framework-based thin-film nanocomposite membranes for reverse osmosis and organic solvent nanofiltration. Chemsuschem 14, 2452–2460 (2021).

    Google Scholar 

  40. Liu, Y. et al. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J. Membr. Sci. 653, 120520 (2022).

    Google Scholar 

  41. Kim, H.-J., Kurisingal, J. F. & Park, D.-W. Ni2(BDC)2(DABCO) metal–organic framework for cyclic carbonate synthesis from CO2 and epoxides (BDC = 1,4-benzendicarboxylic acid, DABCO = 1,4-diazabicyclo[2.2.2]octane). React. Kinet. Mech. Catal. 124, 335–346 (2018).

    Google Scholar 

  42. Milescu, R. A. et al. Fabrication of PES/PVP water filtration membranes using cyrene®, a safer bio-based polar aprotic solvent. Adv. Polym. Technol. 2019, 9692859 (2019).

    Google Scholar 

  43. Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments - Chemical Society Reviews (RSC Publishing) https://doi.org/10.1039/D3CS00395G. https://pubs.rsc.org/en/content/articlehtml/2023/cs/d3cs00395g?utm_source=chatgpt.com.

  44. Jiang, J.-H., Zhu, L.-P., Zhang, H.-T., Zhu, B.-K. & Xu, Y.-Y. Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J. Membr. Sci. 457, 73–81 (2014).

    Google Scholar 

  45. Maniam, P. & Stock, N. Investigation of porous Ni-based metal-organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods. Inorg. Chem. 50, 5085–5097 (2011).

    Google Scholar 

  46. Chang, H., Zhou, Y., Zhang, S., Zheng, X. & Xu, Q. CO2-induced 2D Ni-BDC metal-organic frameworks with enhanced photocatalytic CO2 reduction activity. Adv. Mater. Interfaces 8, 2100205 (2021).

    Google Scholar 

  47. Zorainy, M. Y., Sheashea, M., Kaliaguine, S., Gobara, M. & Boffito, D. C. Facile solvothermal synthesis of a MIL-47(V) metal–organic framework for a high-performance Epoxy/MOF coating with improved anticorrosion properties. RSC Adv. 12, 9008–9022 (2022).

    Google Scholar 

  48. Fleming, I. & Williams, D. Infrared and Raman Spectra. In Fleming, I. & Williams, D. (eds.) Spectroscopic Methods in Organic Chemistry 85–121 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-18252-6_3.

  49. Galley, M., Pravica, M. & Liu, Z. High pressure investigations of melamine. High Press. Res. 33, 40–54 (2013).

    Google Scholar 

  50. Zhu, H., Liu, Z. & Cheng, Z.-L. Stable dispersed N-doped carbon quantum dots-decorated 2D Ni-BDC nanocomposites towards the tribological application. Appl. Surf. Sci. 582, 152428 (2022).

    Google Scholar 

  51. Haris, F. F. P., Rajeev, A., Poyil, M. M., Kelappan, N. K. & Sasi, S. Development of a MOF-5/g-C3N4 nanocomposite: an effective type 2 heterojunction photocatalyst for rhodamine B dye degradation. Environ. Sci. Pollut. Res. 31, 60298–60313 (2024).

    Google Scholar 

  52. Idriss, H. On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 712, 121894 (2021).

    Google Scholar 

  53. Sadeghi, E., Peighambardoust, N. S., Chamani, S. & Aydemir, U. Designing in situ grown ternary oxide/2D Ni-BDC MOF nanocomposites on nickel foam as efficient electrocatalysts for electrochemical water splitting. ACS Mater. Au 3, 143–163 (2023).

    Google Scholar 

  54. Waheed, A. et al. Synthesis of co-polyamide reverse osmosis membrane constituting a linear aliphatic triamine and m-phenylenediamine for enhanced desalination performance. Desalination 549, 116311 (2023).

    Google Scholar 

  55. Wang, D., Su, H., Han, S., Tian, M. & Han, L. The role of microporous metal–organic frameworks in thin-film nanocomposite membranes for nanofiltration. Sep. Purif. Technol. 333, 125859 (2024).

    Google Scholar 

  56. Choi, H., Shah, A. A., Nam, S.-E., Park, Y.-I. & Park, H. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis. Desalination 449, 41–49 (2019).

    Google Scholar 

  57. Deng, Y. et al. Recent development of super-wettable materials and their applications in oil-water separation. J. Clean. Prod. 266, 121624 (2020).

    Google Scholar 

  58. Wen, Y., Chen, Y., Wu, Z., Liu, M. & Wang, Z. Thin-film nanocomposite membranes incorporated with water stable metal-organic framework CuBTTri for mitigating biofouling. J. Membr. Sci. 582, 289–297 (2019).

    Google Scholar 

  59. Zhao, B. et al. Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer. J. Membr. Sci. 625, 119154 (2021).

    Google Scholar 

  60. Li, Y., Zhu, X., Liu, B., Zhang, Y. & Zhu, J. Boosted performance of thin-film nanocomposite membranes based on phytic acid functionalized Zr-MOF for nanofiltration. Desalination 594, 118278 (2025).

    Google Scholar 

  61. Shukla, A. K. et al. Thin-film nanocomposite membrane incorporated with porous Zn-based metal-organic frameworks: Toward enhancement of desalination performance and chlorine resistance. ACS Appl. Mater. Interfaces 13, 28818–28831 (2021).

    Google Scholar 

  62. Liu, H. et al. Enhanced dispersibility of metal–organic frameworks (MOFs) in the organic phase via surface modification for TFN nanofiltration membrane preparation. RSC Adv. 10, 4045–4057 (2020).

    Google Scholar 

  63. Zhu, J. et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration. ACS Appl. Mater. Interfaces 9, 1975–1986 (2017).

    Google Scholar 

  64. Zhu, J. et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. J. Mater. Chem. A 7, 16313–16322 (2019).

    Google Scholar 

  65. Aljundi, I. H. Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles. Desalination 420, 12–20 (2017).

    Google Scholar 

  66. Mutharasi, Y., Zhang, Y., Weber, M., Maletzko, C. & Chung, T.-S. Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination 498, 114740 (2021).

    Google Scholar 

  67. Song, N. et al. Doping MIL-101(Cr)@GO in polyamide nanocomposite membranes with improved water flux. Desalination 492, 114601 (2020).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Interdisciplinary Research Center for Membranes and Water Security at King Fahd University of Petroleum and Minerals for its support through Project #INMW2420.

Funding

This work was supported by the Interdisciplinary Research Center for Membranes and Water Security at King Fahd University of Petroleum and Minerals through Project #INMW2420.

Author information

Authors and Affiliations

  1. Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia

    Abdullateef Dauda & Wail Falath

  2. Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia

    Wail Falath & Abdul Waheed

  3. Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

    Aasif Helal

Authors
  1. Abdullateef Dauda
    View author publications

    Search author on:PubMed Google Scholar

  2. Wail Falath
    View author publications

    Search author on:PubMed Google Scholar

  3. Abdul Waheed
    View author publications

    Search author on:PubMed Google Scholar

  4. Aasif Helal
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.D.: data Curation; formal analysis; Investigation; methodology; writing original draft. W.F.: Project administration, conceptualization; formal analysis; investigation; methodology; resources; supervision; validation; writing—review and editing. A.W and A.H.: conceptualization; investigation; methodology; supervision; writing—review and editing.

Corresponding author

Correspondence to Wail Falath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauda, A., Falath, W., Waheed, A. et al. Synthesis of 2D nickel MOF nanosheets incorporated in thin film nanocomposite membranes for efficient reverse osmosis desalination. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37452-8

Download citation

  • Received: 25 November 2025

  • Accepted: 22 January 2026

  • Published: 28 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37452-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D-MOF nanosheets
  • Exfoliation of 3D MOF
  • Thin-film nanocomposite membranes
  • Polyamide active layer
  • Desalination
  • Fouling
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing