Abstract
The recent development of fabricating thin film nanocomposite (TFN) membranes by utilizing two-dimensional (2D) metal–organic frameworks (MOFs) nanosheets has drawn significant attention due to their potential to enhance membrane performance. The current work focuses on synthesizing 2D nickel-based MOF nanosheets by exfoliating their 3D pillared layered MOF counterpart and then decorating the polyamide (PA) layer of the TFN membranes with different concentrations of the nanosheets. All modified TFN membranes exhibited improved pure water flux (> 50% for the TFN membrane with the highest nanosheet concentration, N-3 with 0.015% 2D-Ni MOF nanosheet) while retaining excellent salt rejection for both monovalent (NaCl) and divalent salts (> 95% for the TFN membrane with the highest nanosheet concentration) compared to the pristine MPD/TMC membrane. Remarkable anti-fouling properties against a 200 ppm bovine serum albumin (BSA) protein foulant, evidenced by its substantial water flux recovery ratio of 91.7% were observed by the modified TFN membranes. Therefore, this current approach of modifying the active PA layer of TFN membranes with 2D MOF nanosheets is quite effective and efficient for fabricating efficient desalination membranes.
Data availability
Data is available upon request.
References
MXenes and other 2D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S1383586622003379.
Boretti, A. & Rosa, L. Reassessing the projections of the world water development report. npj Clean Water 2, 15 (2019).
Al-Ghouti, M. A., Al-Kaabi, M. A., Ashfaq, M. Y. & Da’na, D. A.,. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 28, 222–239 (2019).
Tayeh, Y. A. A comprehensive review of reverse osmosis desalination: Technology, water sources, membrane processes, fouling, and cleaning. Desalin. Water Treat. 320, 100882 (2024).
Aimani, S. E. Modeling of Reverse Osmosis Water Desalination Powered by Photovoltaic Solar Energy. Green Energy Environ. Technol. https://doi.org/10.5772/geet.15 (2023).
Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0043135420300932.
Khorshidi, B., Thundat, T., Fleck, B. A. & Sadrzadeh, M. A Novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci. Rep. 6, 22069 (2016).
Reverse osmosis membrane fabrication and modification technologies and future trends: A review—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S000186861930260X.
Jiang, S., Li, Y. & Ladewig, B. P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 595, 567–583 (2017).
Werber, J. R., Deshmukh, A., & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3 (4), 112–120 https://doi.org/10.1021/acs.estlett.6b00050 (2016).
Yang, Z. et al. A critical review on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent developments, and environmental applications. Environ. Sci. Technol. 54 (24), 15563–15583 https://doi.org/10.1021/acs.est.0c05377 (2020).
Jeong, B.-H. et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007).
Taghipour, S., Khadir, A. & Taghipour, M. Carbon Nanotubes Composite Membrane for Water Desalination. In Inamuddin & Khan, A. (eds.) Sustainable Materials and Systems for Water Desalination. 163–184 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-72873-1_10.
Wan Azelee, I. et al. Enhanced desalination of polyamide thin film nanocomposite incorporated with acid treated multiwalled carbon nanotube-titania nanotube hybrid. Desalination 409, 163–170 (2017).
Ali, M. E. A., Wang, L., Wang, X. & Feng, X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386, 67–76 (2016).
Wu, X. et al. Microporous carbon from fullerene impregnated porous aromatic frameworks for improving the desalination performance of thin film composite forward osmosis membranes. J. Mater. Chem. A 6, 11327–11336 (2018).
Rajakumaran, R., Kumar, M. & Chetty, R. Morphological effect of ZnO nanostructures on desalination performance and antibacterial activity of thin-film nanocomposite (TFN) membrane. Desalination 495, 114673 (2020).
Rajakumaran, R. et al. Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination. Desalination 467, 245–256 (2019).
Al Mayyahi, A. TiO2 polyamide thin film nanocomposite reverses osmosis membrane for water desalination. Membranes 8, 66 (2018).
Mayyahi, A. A. & Asadi, H. A. Thin film nanocomposite membrane impregnated with clay nanoparticles for water desalination. Saudi J. Civil Eng. 1 (1), 24–29 (2017).
Wei, Y. et al. Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. J. Membr. Sci. 636, 119586 (2021).
Kim, E.-S., Hwang, G., Gamal El-Din, M. & Liu, Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 394–395, 37–48 (2012).
Tang, C. Y. et al. Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 52, 10215–10223 (2018).
Li, D., Yan, Y. & Wang, H. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 61, 104–155 (2016).
Zhang, Y., Feng, X., Yuan, S., Zhou, J. & Wang, B. Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorg. Chem. Front. 3, 896–909 (2016).
Dutta, S. et al. Metal-organic frameworks for water desalination. Adv. Funct. Mater. 34, 2304790 (2024).
Bonnett, B. L. et al. PCN-222 Metal-organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes. ACS Appl. Mater. Interfaces 12, 15765–15773 (2020).
Xu, Y. et al. Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101 (Cr) Nanoparticles for reverse osmosis application. Materials 9, 870 (2016).
Kadhom, M., Hu, W. & Deng, B. Thin film nanocomposite membrane filled with metal-organic frameworks UiO-66 and MIL-125 Nanoparticles for water desalination. Membranes 7, 31 (2017).
Duan, Y., Li, L., Shen, Z., Cheng, J. & He, K. Engineering metal-organic-framework (MOF)-based membranes for gas and liquid separation. Membranes 13, 480 (2023).
Yang, Y., Goh, K., Wang, R. & Bae, T.-H. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem. Commun. 53, 4254–4257 (2017).
Li, Y. et al. Thermally reduced nanoporous graphene oxide membrane for desalination. Environ. Sci. Technol. 53, 8314–8323 (2019).
Yuan, S. et al. Minimizing non-selective nanowrinkles of reduced graphene oxide laminar membranes for enhanced NaCl rejection. Environ. Sci. Technol. Lett. 7, 273–279 (2020).
Wang, Z. et al. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017).
Liu, Y. et al. Water desalination across multilayer graphitic carbon nitride membrane: Insights from non-equilibrium molecular dynamics simulations. Carbon 140, 131–138 (2018).
Gao, H. et al. Rational design and strain engineering of nanoporous boron nitride nanosheet membranes for water desalination. J. Phys. Chem. C 121, 22105–22113 (2017).
Jafarzadeh, R., Azamat, J., Erfan-Niya, H. & Hosseini, M. Molecular insights into effective water desalination through functionalized nanoporous boron nitride nanosheet membranes. Appl. Surf. Sci. 471, 921–928 (2019).
Karahan, H. E. et al. MXene materials for designing advanced separation membranes. Adv. Mater. 32, 1906697 (2020).
Li, F., Liu, T. D., Xie, S., Guan, J. & Zhang, S. 2D metal-organic framework-based thin-film nanocomposite membranes for reverse osmosis and organic solvent nanofiltration. Chemsuschem 14, 2452–2460 (2021).
Liu, Y. et al. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J. Membr. Sci. 653, 120520 (2022).
Kim, H.-J., Kurisingal, J. F. & Park, D.-W. Ni2(BDC)2(DABCO) metal–organic framework for cyclic carbonate synthesis from CO2 and epoxides (BDC = 1,4-benzendicarboxylic acid, DABCO = 1,4-diazabicyclo[2.2.2]octane). React. Kinet. Mech. Catal. 124, 335–346 (2018).
Milescu, R. A. et al. Fabrication of PES/PVP water filtration membranes using cyrene®, a safer bio-based polar aprotic solvent. Adv. Polym. Technol. 2019, 9692859 (2019).
Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments - Chemical Society Reviews (RSC Publishing) https://doi.org/10.1039/D3CS00395G. https://pubs.rsc.org/en/content/articlehtml/2023/cs/d3cs00395g?utm_source=chatgpt.com.
Jiang, J.-H., Zhu, L.-P., Zhang, H.-T., Zhu, B.-K. & Xu, Y.-Y. Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives. J. Membr. Sci. 457, 73–81 (2014).
Maniam, P. & Stock, N. Investigation of porous Ni-based metal-organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods. Inorg. Chem. 50, 5085–5097 (2011).
Chang, H., Zhou, Y., Zhang, S., Zheng, X. & Xu, Q. CO2-induced 2D Ni-BDC metal-organic frameworks with enhanced photocatalytic CO2 reduction activity. Adv. Mater. Interfaces 8, 2100205 (2021).
Zorainy, M. Y., Sheashea, M., Kaliaguine, S., Gobara, M. & Boffito, D. C. Facile solvothermal synthesis of a MIL-47(V) metal–organic framework for a high-performance Epoxy/MOF coating with improved anticorrosion properties. RSC Adv. 12, 9008–9022 (2022).
Fleming, I. & Williams, D. Infrared and Raman Spectra. In Fleming, I. & Williams, D. (eds.) Spectroscopic Methods in Organic Chemistry 85–121 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-18252-6_3.
Galley, M., Pravica, M. & Liu, Z. High pressure investigations of melamine. High Press. Res. 33, 40–54 (2013).
Zhu, H., Liu, Z. & Cheng, Z.-L. Stable dispersed N-doped carbon quantum dots-decorated 2D Ni-BDC nanocomposites towards the tribological application. Appl. Surf. Sci. 582, 152428 (2022).
Haris, F. F. P., Rajeev, A., Poyil, M. M., Kelappan, N. K. & Sasi, S. Development of a MOF-5/g-C3N4 nanocomposite: an effective type 2 heterojunction photocatalyst for rhodamine B dye degradation. Environ. Sci. Pollut. Res. 31, 60298–60313 (2024).
Idriss, H. On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 712, 121894 (2021).
Sadeghi, E., Peighambardoust, N. S., Chamani, S. & Aydemir, U. Designing in situ grown ternary oxide/2D Ni-BDC MOF nanocomposites on nickel foam as efficient electrocatalysts for electrochemical water splitting. ACS Mater. Au 3, 143–163 (2023).
Waheed, A. et al. Synthesis of co-polyamide reverse osmosis membrane constituting a linear aliphatic triamine and m-phenylenediamine for enhanced desalination performance. Desalination 549, 116311 (2023).
Wang, D., Su, H., Han, S., Tian, M. & Han, L. The role of microporous metal–organic frameworks in thin-film nanocomposite membranes for nanofiltration. Sep. Purif. Technol. 333, 125859 (2024).
Choi, H., Shah, A. A., Nam, S.-E., Park, Y.-I. & Park, H. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis. Desalination 449, 41–49 (2019).
Deng, Y. et al. Recent development of super-wettable materials and their applications in oil-water separation. J. Clean. Prod. 266, 121624 (2020).
Wen, Y., Chen, Y., Wu, Z., Liu, M. & Wang, Z. Thin-film nanocomposite membranes incorporated with water stable metal-organic framework CuBTTri for mitigating biofouling. J. Membr. Sci. 582, 289–297 (2019).
Zhao, B. et al. Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer. J. Membr. Sci. 625, 119154 (2021).
Li, Y., Zhu, X., Liu, B., Zhang, Y. & Zhu, J. Boosted performance of thin-film nanocomposite membranes based on phytic acid functionalized Zr-MOF for nanofiltration. Desalination 594, 118278 (2025).
Shukla, A. K. et al. Thin-film nanocomposite membrane incorporated with porous Zn-based metal-organic frameworks: Toward enhancement of desalination performance and chlorine resistance. ACS Appl. Mater. Interfaces 13, 28818–28831 (2021).
Liu, H. et al. Enhanced dispersibility of metal–organic frameworks (MOFs) in the organic phase via surface modification for TFN nanofiltration membrane preparation. RSC Adv. 10, 4045–4057 (2020).
Zhu, J. et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration. ACS Appl. Mater. Interfaces 9, 1975–1986 (2017).
Zhu, J. et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. J. Mater. Chem. A 7, 16313–16322 (2019).
Aljundi, I. H. Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles. Desalination 420, 12–20 (2017).
Mutharasi, Y., Zhang, Y., Weber, M., Maletzko, C. & Chung, T.-S. Novel reverse osmosis membranes incorporated with Co-Al layered double hydroxide (LDH) with enhanced performance for brackish water desalination. Desalination 498, 114740 (2021).
Song, N. et al. Doping MIL-101(Cr)@GO in polyamide nanocomposite membranes with improved water flux. Desalination 492, 114601 (2020).
Acknowledgements
The authors would like to acknowledge the Interdisciplinary Research Center for Membranes and Water Security at King Fahd University of Petroleum and Minerals for its support through Project #INMW2420.
Funding
This work was supported by the Interdisciplinary Research Center for Membranes and Water Security at King Fahd University of Petroleum and Minerals through Project #INMW2420.
Author information
Authors and Affiliations
Contributions
A.D.: data Curation; formal analysis; Investigation; methodology; writing original draft. W.F.: Project administration, conceptualization; formal analysis; investigation; methodology; resources; supervision; validation; writing—review and editing. A.W and A.H.: conceptualization; investigation; methodology; supervision; writing—review and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Dauda, A., Falath, W., Waheed, A. et al. Synthesis of 2D nickel MOF nanosheets incorporated in thin film nanocomposite membranes for efficient reverse osmosis desalination. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37452-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37452-8