Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Seasonal dynamics and core stability of the bacterial microbiome of a Drosophila suzukii wild population
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

Seasonal dynamics and core stability of the bacterial microbiome of a Drosophila suzukii wild population

  • Marino Costa-Santos1,2,
  • Sara Sario1,2,
  • Rafael J. Mendes1,2 &
  • …
  • Conceição Santos1,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 464 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Microbiology
  • Zoology

Abstract

Drosophila suzukii (spotted-wing drosophila, SWD) is an invasive pest with pronounced sexual dimorphism and seasonal polyphenism. While seasonal morphotypes are well documented, how these phenotypic traits shape the SWD microbiome remains poorly understood. Here, we investigate how sex and seasonal phenotypes shape microbiome composition in SWD. We hypothesize that these factors drive microbial shifts, with some taxa varying between phenotypes and others forming a stable core. Understanding these patterns may reveal microbiome-associated adaptations relevant to SWD ecology and management. To investigate this, we monitored SWD microbiome dynamics over one year by collecting individuals during spring, summer, and autumn of 2022 and winter of 2023 from an organic farm in northern Portugal. Bacterial communities were compared using 16 S rRNA amplicon sequencing. This SWD population retained a core bacterial community, highly represented by Gluconobacter, Pseudomonas, Commensalibacter and Pantoea, consistent with other SWD Portuguese populations. Moreover, microbiome composition varied significantly across seasons but not between sexes, although females exhibited higher microbial alpha diversity. Linear discriminant analysis of relative abundance (LEfSe) revealed enrichment of Morganella, Methanosaeta, Serratia, Duganella, Frateuria, Suttonella, and Janthinobacterium in winter groups. However, functional prediction analyses revealed no significant differences in microbiome functional potential across seasons, suggesting functional redundancy despite taxonomic variation. This study offers baseline insights into the seasonal stability and plasticity of the D. suzukii microbiome, contributing to a deeper ecological understanding of this invasive pest.

Similar content being viewed by others

Microbial communities across activated sludge plants show recurring species-level seasonal patterns

Article Open access 18 February 2022

Understanding key population drivers of the spotted wing Drosophila in cultivated and natural areas in the Andes

Article Open access 20 February 2025

Seasonal activities of the phyllosphere microbiome of perennial crops

Article Open access 23 February 2023

Data availability

The datasets generated during and/or analyzed during the current study are available in the National Library of Medicine (NCBI) Sequence Read Archive (SRA) repository, [https://www.ncbi.nlm.nih.gov/sra/PRJNA1162420](https:/www.ncbi.nlm.nih.gov/sra/PRJNA1162420).

References

  1. Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila Suzukii. Pest Manag. Sci. 75 (5), 1270–1276 (2019).

    Google Scholar 

  2. Ganjisaffar, F., Demkovich, M. R., Chiu, J. C. & Zalom, F. G. Characterization of field-derived Drosophila Suzukii (Diptera: Drosophilidae) resistance to pyrethroids in California berry production. J. Econ. Entomol. 115 (5), 1676–1684 (2022).

    Google Scholar 

  3. Knapp, L., Mazzi, D. & Finger, R. The economic impact of Drosophila suzukii: perceived costs and revenue losses of Swiss cherry, Plum and grape growers. Pest Manag. Sci. 77 (2), 978–1000 (2021).

    Google Scholar 

  4. Schöneberg, T. et al. & Hamby, K. A. Cultural control of Drosophila suzukii in small fruit - current and pending tactics in the US. Insects 12(2), 172 (2021).

  5. Sario, S., Melo-Ferreira, J. & Santos, C. Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering? Biology 12(7), 907 (2023).

  6. Stockton, D. G. et al. Seasonal polyphenism of spotted-wing Drosophila is affected by variation in local abiotic conditions within its invaded range, likely influencing survival and regional population dynamics. Ecol. Evol. 10 (14), 7669–7685 (2020).

    Google Scholar 

  7. Panel, A. D., Pen, I., Pannebakker, B. A., Helsen, H. H. & Wertheim, B. Seasonal morphotypes of Drosophila Suzukii differ in key life-history traits during and after a prolonged period of cold exposure. Ecol. Evol. 10 (17), 9085–9099 (2020).

    Google Scholar 

  8. Jiménez-Padilla, Y., Esan, E. O., Floate, K. D. & Sinclair, B. J. Persistence of diet effects on the microbiota of Drosophila Suzukii (Diptera: Drosophilidae). Can. Entomol. 152 (4), 516–531 (2020).

    Google Scholar 

  9. Martinez-Sañudo, I. et al. Metagenomic analysis reveals changes of the Drosophila Suzukii microbiota in the newly colonized regions. Insect Sci. 25 (5), 833–846 (2018).

    Google Scholar 

  10. Hiebert, N., Carrau, T., Bartling, M., Vilcinskas, A. & Lee, K. Z. Identification of entomopathogenic bacteria associated with the invasive pest Drosophila Suzukii in infested areas of Germany. J. Invertebr. Pathol. 173, 107389 (2020).

    Google Scholar 

  11. Tafesh-Edwards, G. & Eleftherianos, I. The role of Drosophila microbiota in gut homeostasis and immunity. Gut Microbes. 15 (1), 2208503 (2023).

    Google Scholar 

  12. Consuegra, J. et al. Metabolic Cooperation among commensal bacteria supports Drosophila juvenile growth under nutritional stress. iScience 23 (6), 101232 (2020).

  13. da Silva Soares, N. F., Quagliariello, A., Yigitturk, S. & Martino, M. E. Gut microbes predominantly act as living beneficial partners rather than Raw nutrients. Sci. Rep. 13 (1), 11981 (2023).

    Google Scholar 

  14. Gao, H. H. et al. Gut bacterium promotes host fitness in special ecological niche by affecting sugar metabolism in Drosophila Suzukii. Insect Sci. 30 (6), 1713–1733 (2023).

    Google Scholar 

  15. Durovic, G. The exploitation of microbial volatiles for integrated pest management of spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae) [Doctoral dissertation, Swedish University of Agricultural Sciences]. SLU Electronic Archive (2022).

  16. Babin, A., Gatti, J. L. & Poirié, M. Bacillus Thuringiensis bioinsecticide influences Drosophila oviposition decision. Royal Soc. Open. Sci. 10 (8), 230565 (2023).

    Google Scholar 

  17. Mastore, M., Caramella, S., Quadroni, S. & Brivio, M. F. Drosophila Suzukii susceptibility to the oral administration of Bacillus thuringiensis, Xenorhabdus nematophila and its secondary metabolites. Insects 12 (7), 635 (2021).

    Google Scholar 

  18. Grenier, T. & Leulier, F. How commensal microbes shape the physiology of Drosophila melanogaster. Curr. Opin. Insect Sci. 41, 92–99 (2020).

    Google Scholar 

  19. Bing, X. L., Winkler, J., Gerlach, J., Loeb, G. & Buchon, N. Identification of natural pathogens from wild Drosophila Suzukii. Pest Manag. Sci. 77 (4), 1594–1606 (2021).

    Google Scholar 

  20. Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on drosophila Suzukii development. mBio 9 (2), e02199–e02117 (2018).

    Google Scholar 

  21. Solomon, G. M., Dodangoda, H., McCarthy-Walker, T., Ntim-Gyakari, R. & Newell, P. D. The microbiota of Drosophila Suzukii influences the larval development of Drosophila melanogaster. PeerJ 7, e8097 (2019).

    Google Scholar 

  22. Gurung, K., Vink, S. N., Salles, J. F. & Wertheim, B. More persistent bacterial than fungal associations in the microbiota of a pest insect. J. Pest Sci. 96 (2), 785–796 (2023).

    Google Scholar 

  23. Han, G., Lee, H. J., Jeong, S. E., Jeon, C. O. & Hyun, S. Comparative analysis of Drosophila melanogaster gut microbiota with respect to host strain, sex, and age. Microb. Ecol. 74, 207–216 (2017).

    Google Scholar 

  24. Leech, T. et al. Social environment drives sex and age-specific variation in Drosophila melanogaster Microbiome composition and predicted function. Mol. Ecol. 30 (22), 5831–5843 (2021).

    Google Scholar 

  25. Guilhot, R., Xuéreb, A., Lagmairi, A., Olazcuaga, L. & Fellous, S. Microbiota acquisition and transmission in Drosophila flies. iScience 26(9) (2023).

  26. Clymans, R. et al. Olfactory preference of Drosophila Suzukii shifts between fruit and fermentation cues over the season: effects of physiological status. Insects 10 (7), 200 (2019).

    Google Scholar 

  27. Fountain, M. T. et al. Alimentary microbes of winter‐form Drosophila Suzukii. Insect Mol. Biol. 27 (3), 383–392 (2018).

    Google Scholar 

  28. Stockton, D. G., Brown, R. & Loeb, G. M. Not berry hungry? Discovering the hidden food sources of a small fruit specialist, Drosophila Suzukii. Ecol. Entomol. 44 (6), 810–822 (2019).

    Google Scholar 

  29. Ferguson, L. V. et al. Seasonal shifts in the insect gut Microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32 (10), 2357–2368 (2018).

    Google Scholar 

  30. Jaramillo, A. & Castañeda, L. E. Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress. Front. Microbiol. 12, 654108 (2021).

    Google Scholar 

  31. Henry, Y. & Colinet, H. Microbiota disruption leads to reduced cold tolerance in Drosophila flies. Sci. Nat. 105 (9–10), 59 (2018).

    Google Scholar 

  32. Zare, A., Johansson, A. M., Karlsson, E., Delhomme, N. & Stenberg, P. The gut Microbiome participates in transgenerational inheritance of low-temperature responses in Drosophila melanogaster. FEBS Lett. 592 (24), 4078–4086 (2018).

    Google Scholar 

  33. Tran, A. K., Hutchison, W. D. & Asplen, M. K. Morphometric criteria to differentiate Drosophila Suzukii (Diptera: Drosophilidae) seasonal morphs. PloS One. 15 (2), e0228780 (2020).

    Google Scholar 

  34. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 (Database issue), D590–D596 (2013).

    Google Scholar 

  35. Chong, J., Liu, P., Zhou, G. & Xia, J. Using Microbiomeanalyst for comprehensive statistical, functional, and meta-analysis of Microbiome data. Nat. Protoc. 15 (3), 799–821 (2020).

    Google Scholar 

  36. Dhariwal, A. et al. A web-based tool for comprehensive statistical, visual and meta-analysis of Microbiome data. Nucleic Acids Res. 45 (W1), W180–W188 (2017).

    Google Scholar 

  37. Douglas, G. M. et al. G. I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38 (6), 685–688 (2020).

    Google Scholar 

  38. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53 (Database issue D1), D672–D677 [PMID:39417505] (2025).

  39. Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019). [PMID:31441146].

    Google Scholar 

  40. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). [PMID: 10592173].

    Google Scholar 

  41. Oksanen, J. et al. J., vegan: Community ecology package (Version 2.6–10) [R package]. Comprehensive R Archive Network. https://CRAN.R-project.org/package=vegan (2025).

  42. Chandler, J. A., James, P. M., Jospin, G. & Lang, J. M. The bacterial communities of Drosophila Suzukii collected from undamaged cherries. PeerJ 2, e474 (2014).

    Google Scholar 

  43. Lin, Q. et al. Analyses of the gut bacteriomes of four important Drosophila pests. Can. Entomol. 153 (6), 757–773 (2021).

    Google Scholar 

  44. Ferguson, C. T., O’Neill, T. L., Audsley, N. & Isaac, R. E. The sexually dimorphic behaviour of adult Drosophila suzukii: elevated female locomotor activity and loss of siesta is a post-mating response. J. Exp. Biol. 218 (23), 3855–3861 (2015).

    Google Scholar 

  45. Shu, R. et al. N. Sex-dependent effects of the Microbiome on foraging and locomotion in Drosophila Suzukii. Front. Microbiol. 12, 656406 (2021).

    Google Scholar 

  46. Davies, L. R., Loeschcke, V., Schou, M. F., Schramm, A. & Kristensen, T. N. The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability. Sci. Rep. 11 (1), 18850 (2021).

    Google Scholar 

  47. Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14 (3), 801–814 (2020).

    Google Scholar 

  48. Schwanitz, T. W. et al. Molecular and behavioral studies reveal differences in olfaction between winter and summer morphs of Drosophila suzukii. PeerJ 10, e13825 (2022).

  49. Carlini, D. B., Winslow, S. K., Cloppenborg-Schmidt, K. & Baines, J. F. Quantitative Microbiome profiling of honey bee (Apis mellifera) guts is predictive of winter colony loss in Northern Virginia (USA). Sci. Rep. 14 (1), 11021 (2024).

    Google Scholar 

  50. Wallingford, A. K., Rice, K. B., Leskey, T. C. & Loeb, G. M. Overwintering behavior of drosophila suzukii, and potential springtime diets for egg maturation. Environ. Entomol. 47 (5), 1266–1273 (2018).

    Google Scholar 

  51. Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis Pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86 (3), 250–264 (1993).

    Google Scholar 

  52. Männistö, M. K. & Häggblom, M. M. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst. Appl. Microbiol. 29 (3), 229–243 (2006).

    Google Scholar 

  53. Friedrich, I. et al. First complete genome sequences of Janthinobacterium lividum EIF1 and EIF2 and their comparative genome analysis. Genome Biol. Evol. 12 (10), 1782–1788 (2020).

    Google Scholar 

  54. Park, H., Park, S., Yang, Y. H. & Choi, K. Y. Microbial synthesis of Violacein pigment and its potential applications. Crit. Rev. Biotechnol. 41 (6), 879–901 (2021).

    Google Scholar 

  55. Bandy, A. Ringing bells: Morganella Morganii fights for recognition. Public. Health. 182, 45–50 (2020).

    Google Scholar 

  56. Nikolouli, K., Colinet, H., Stauffer, C. & Bourtzis, K. How the mighty have adapted: genetic and Microbiome changes during laboratory adaptation in the key pest Drosophila Suzukii. Entomologia Generalis 42 (5), 723–732 (2022).

  57. Ren, X. et al. Gut symbiotic bacteria are involved in nitrogen recycling in the tephritid fruit fly Bactrocera dorsalis. BMC Biol. 20 (1), 201 (2022).

    Google Scholar 

  58. Ji, C., Kong, C. X., Mei, Z. L. & Li, J. A review of the anaerobic digestion of fruit and vegetable waste. Appl. Biochem. Biotechnol. 183 (3), 906–922 (2017).

    Google Scholar 

  59. Nordgård, A. S. R. et al. Anaerobic digestion of pig manure supernatant at high ammonia concentrations characterized by high abundances of Methanosaeta and non-euryarchaeotal archaea. Sci. Rep. 7 (1), 15077 (2017).

    Google Scholar 

  60. Xia, X. J., Wu, W., Chen, J. P. & Shan, H. W. The gut bacterium Serratia marcescens mediates detoxification of organophosphate pesticide in Riptortus Pedestris by microbial degradation. J. Appl. Entomol. 147 (6), 406–415 (2023).

    Google Scholar 

  61. AbdEl-Mongy, M. A., Rahman, M. F. & Shukor, M. Y. Isolation and characterization of a Molybdenum-reducing and Carbamate-degrading Serratia sp. strain Amr-4 in soils from Egypt. Asian J. Plant. Biology. 3 (2), 25–32 (2021).

    Google Scholar 

  62. Lidor, O. et al. Frateuria defendens sp. nov., bacterium isolated from the yellows grapevine’s disease vector hyalesthes obsoletus. Int. J. Syst. Evol. MicroBiol. 69 (5), 1281–1287 (2019).

    Google Scholar 

  63. Naama-Amar, A. et al. Antimicrobial activity of metabolites secreted by the endophytic bacterium frateuria defendens. Plants 9 (1), 72 (2020).

    Google Scholar 

  64. Naama-Amar, A., Gerchman, Y., Kruh, I., Naor, V. & L., & Evaluation of the biocontrol activity of frateuria defendens-derived metabolites against mollicutes. Plant Signal. Behav. 17 (1), 2070355 (2022).

    Google Scholar 

  65. Swings, J. The genus Frateuria. In (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E.) The Prokaryotes (844–845). Springer. (2006).

  66. Zhao, M., Lin, X. & Guo, X. The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals. Insects 13 (7), 583 (2022).

    Google Scholar 

  67. Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29 (23), 4692–4705 (2020).

    Google Scholar 

  68. Martín-Maldonado, B. & Esperón-Fajardo, F. Can Suttonella Ornithocola entail a potential hazard to songbirds? A systematic review. Eur. J. Wildl. Res. 70 (1), 29 (2024).

    Google Scholar 

  69. Zhang, M. et al. Analysis of the gut microbiota in Suncus murinus, a natural Obesity-Resistant experimental animal. J. Food Sci. Nutr. Res. 7, 44–51 (2024).

    Google Scholar 

  70. Simhadri, R. K. et al. The gut commensal Microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia. mSphere 2 (5), e00287–e00217 (2017).

    Google Scholar 

  71. Hague, M. T., Caldwell, C. N. & Cooper, B. S. Pervasive effects of Wolbachia on host temperature preference. mBio 11(5), 10-1128 (2020).

  72. Deconninck, G. et al. Wolbachia improves the performance of an invasive fly after a diet shift. J. Pest Sci. 97, 1–13 (2024).

    Google Scholar 

  73. Cattel, J., Martinez, J., Jiggins, F., Mouton, L. & Gibert, P. Wolbachia-mediated protection against viruses in the invasive pest Drosophila Suzukii. Insect Mol. Biol. 25 (5), 595–603 (2016).

    Google Scholar 

  74. Nehme, N. T. et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS pathogens, 3(11), e173 (2007). (2007).

  75. Mure, A. et al. Identification of key yeast species and microbe–microbe interactions impacting larval growth of Drosophila in the wild. eLife 13, e90148 (2024).

    Google Scholar 

  76. Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted wing drosophila (Drosophila suzukii; diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78 (14), 4869–4873 (2012).

    Google Scholar 

Download references

Acknowledgements

This work received support and help from FCT/MCTES (LA/P/0008/2020 DOI https://doi.org/10.54499/LA/P/0008/2020, UIDP/50006/2020 DOI https://doi.org/10.54499/UIDP/50006/2020 and UIDB/50006/2020 DOI https://doi.org/10.54499/UIDB50006/2020), through national funds.

Funding

MCS PhD work was supported by Fundação para a Ciência e Tecnologia (FCT), through Grant Number 2021.06319.BD (DOI https://doi.org/10.54499/2021.06319.BD). Research was funded by the FCT DrosuGreen Project (reference PTDC/ASP-PLA/4477/2020).

Author information

Authors and Affiliations

  1. Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007, Porto, Portugal

    Marino Costa-Santos, Sara Sario, Rafael J. Mendes & Conceição Santos

  2. LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007, Porto, Portugal

    Marino Costa-Santos, Sara Sario, Rafael J. Mendes & Conceição Santos

Authors
  1. Marino Costa-Santos
    View author publications

    Search author on:PubMed Google Scholar

  2. Sara Sario
    View author publications

    Search author on:PubMed Google Scholar

  3. Rafael J. Mendes
    View author publications

    Search author on:PubMed Google Scholar

  4. Conceição Santos
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, MCS and CS; Methodology, MCS, SS, RJM, and CS; Validation, MCS; Formal Analysis, MCS, SS, RJM, and CS; Investigation, MCS; Resources, CS; Writing – Original Draft Preparation, MCS; Writing – Review & Editing, MCS, SS, RJM, and CS; Visualization, MCS, SS, RJM, and CS; Supervision, SS, RJM, and CS; Project Administration, SS, and CS; Funding Acquisition, CS.

Corresponding author

Correspondence to Marino Costa-Santos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa-Santos, M., Sario, S., Mendes, R.J. et al. Seasonal dynamics and core stability of the bacterial microbiome of a Drosophila suzukii wild population. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37656-y

Download citation

  • Received: 17 September 2025

  • Accepted: 23 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37656-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Spotted-wing drosophila
  • Summer and winter morphotypes
  • Bacteriota
  • Core microbiome
  • Microbiome shifts
  • Host-microbe interaction
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology