Abstract
Drosophila suzukii (spotted-wing drosophila, SWD) is an invasive pest with pronounced sexual dimorphism and seasonal polyphenism. While seasonal morphotypes are well documented, how these phenotypic traits shape the SWD microbiome remains poorly understood. Here, we investigate how sex and seasonal phenotypes shape microbiome composition in SWD. We hypothesize that these factors drive microbial shifts, with some taxa varying between phenotypes and others forming a stable core. Understanding these patterns may reveal microbiome-associated adaptations relevant to SWD ecology and management. To investigate this, we monitored SWD microbiome dynamics over one year by collecting individuals during spring, summer, and autumn of 2022 and winter of 2023 from an organic farm in northern Portugal. Bacterial communities were compared using 16 S rRNA amplicon sequencing. This SWD population retained a core bacterial community, highly represented by Gluconobacter, Pseudomonas, Commensalibacter and Pantoea, consistent with other SWD Portuguese populations. Moreover, microbiome composition varied significantly across seasons but not between sexes, although females exhibited higher microbial alpha diversity. Linear discriminant analysis of relative abundance (LEfSe) revealed enrichment of Morganella, Methanosaeta, Serratia, Duganella, Frateuria, Suttonella, and Janthinobacterium in winter groups. However, functional prediction analyses revealed no significant differences in microbiome functional potential across seasons, suggesting functional redundancy despite taxonomic variation. This study offers baseline insights into the seasonal stability and plasticity of the D. suzukii microbiome, contributing to a deeper ecological understanding of this invasive pest.
Similar content being viewed by others
Data availability
The datasets generated during and/or analyzed during the current study are available in the National Library of Medicine (NCBI) Sequence Read Archive (SRA) repository, [https://www.ncbi.nlm.nih.gov/sra/PRJNA1162420](https:/www.ncbi.nlm.nih.gov/sra/PRJNA1162420).
References
Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila Suzukii. Pest Manag. Sci. 75 (5), 1270–1276 (2019).
Ganjisaffar, F., Demkovich, M. R., Chiu, J. C. & Zalom, F. G. Characterization of field-derived Drosophila Suzukii (Diptera: Drosophilidae) resistance to pyrethroids in California berry production. J. Econ. Entomol. 115 (5), 1676–1684 (2022).
Knapp, L., Mazzi, D. & Finger, R. The economic impact of Drosophila suzukii: perceived costs and revenue losses of Swiss cherry, Plum and grape growers. Pest Manag. Sci. 77 (2), 978–1000 (2021).
Schöneberg, T. et al. & Hamby, K. A. Cultural control of Drosophila suzukii in small fruit - current and pending tactics in the US. Insects 12(2), 172 (2021).
Sario, S., Melo-Ferreira, J. & Santos, C. Winter Is (Not) Coming: Is Climate Change Helping Drosophila suzukii Overwintering? Biology 12(7), 907 (2023).
Stockton, D. G. et al. Seasonal polyphenism of spotted-wing Drosophila is affected by variation in local abiotic conditions within its invaded range, likely influencing survival and regional population dynamics. Ecol. Evol. 10 (14), 7669–7685 (2020).
Panel, A. D., Pen, I., Pannebakker, B. A., Helsen, H. H. & Wertheim, B. Seasonal morphotypes of Drosophila Suzukii differ in key life-history traits during and after a prolonged period of cold exposure. Ecol. Evol. 10 (17), 9085–9099 (2020).
Jiménez-Padilla, Y., Esan, E. O., Floate, K. D. & Sinclair, B. J. Persistence of diet effects on the microbiota of Drosophila Suzukii (Diptera: Drosophilidae). Can. Entomol. 152 (4), 516–531 (2020).
Martinez-Sañudo, I. et al. Metagenomic analysis reveals changes of the Drosophila Suzukii microbiota in the newly colonized regions. Insect Sci. 25 (5), 833–846 (2018).
Hiebert, N., Carrau, T., Bartling, M., Vilcinskas, A. & Lee, K. Z. Identification of entomopathogenic bacteria associated with the invasive pest Drosophila Suzukii in infested areas of Germany. J. Invertebr. Pathol. 173, 107389 (2020).
Tafesh-Edwards, G. & Eleftherianos, I. The role of Drosophila microbiota in gut homeostasis and immunity. Gut Microbes. 15 (1), 2208503 (2023).
Consuegra, J. et al. Metabolic Cooperation among commensal bacteria supports Drosophila juvenile growth under nutritional stress. iScience 23 (6), 101232 (2020).
da Silva Soares, N. F., Quagliariello, A., Yigitturk, S. & Martino, M. E. Gut microbes predominantly act as living beneficial partners rather than Raw nutrients. Sci. Rep. 13 (1), 11981 (2023).
Gao, H. H. et al. Gut bacterium promotes host fitness in special ecological niche by affecting sugar metabolism in Drosophila Suzukii. Insect Sci. 30 (6), 1713–1733 (2023).
Durovic, G. The exploitation of microbial volatiles for integrated pest management of spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae) [Doctoral dissertation, Swedish University of Agricultural Sciences]. SLU Electronic Archive (2022).
Babin, A., Gatti, J. L. & Poirié, M. Bacillus Thuringiensis bioinsecticide influences Drosophila oviposition decision. Royal Soc. Open. Sci. 10 (8), 230565 (2023).
Mastore, M., Caramella, S., Quadroni, S. & Brivio, M. F. Drosophila Suzukii susceptibility to the oral administration of Bacillus thuringiensis, Xenorhabdus nematophila and its secondary metabolites. Insects 12 (7), 635 (2021).
Grenier, T. & Leulier, F. How commensal microbes shape the physiology of Drosophila melanogaster. Curr. Opin. Insect Sci. 41, 92–99 (2020).
Bing, X. L., Winkler, J., Gerlach, J., Loeb, G. & Buchon, N. Identification of natural pathogens from wild Drosophila Suzukii. Pest Manag. Sci. 77 (4), 1594–1606 (2021).
Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on drosophila Suzukii development. mBio 9 (2), e02199–e02117 (2018).
Solomon, G. M., Dodangoda, H., McCarthy-Walker, T., Ntim-Gyakari, R. & Newell, P. D. The microbiota of Drosophila Suzukii influences the larval development of Drosophila melanogaster. PeerJ 7, e8097 (2019).
Gurung, K., Vink, S. N., Salles, J. F. & Wertheim, B. More persistent bacterial than fungal associations in the microbiota of a pest insect. J. Pest Sci. 96 (2), 785–796 (2023).
Han, G., Lee, H. J., Jeong, S. E., Jeon, C. O. & Hyun, S. Comparative analysis of Drosophila melanogaster gut microbiota with respect to host strain, sex, and age. Microb. Ecol. 74, 207–216 (2017).
Leech, T. et al. Social environment drives sex and age-specific variation in Drosophila melanogaster Microbiome composition and predicted function. Mol. Ecol. 30 (22), 5831–5843 (2021).
Guilhot, R., Xuéreb, A., Lagmairi, A., Olazcuaga, L. & Fellous, S. Microbiota acquisition and transmission in Drosophila flies. iScience 26(9) (2023).
Clymans, R. et al. Olfactory preference of Drosophila Suzukii shifts between fruit and fermentation cues over the season: effects of physiological status. Insects 10 (7), 200 (2019).
Fountain, M. T. et al. Alimentary microbes of winter‐form Drosophila Suzukii. Insect Mol. Biol. 27 (3), 383–392 (2018).
Stockton, D. G., Brown, R. & Loeb, G. M. Not berry hungry? Discovering the hidden food sources of a small fruit specialist, Drosophila Suzukii. Ecol. Entomol. 44 (6), 810–822 (2019).
Ferguson, L. V. et al. Seasonal shifts in the insect gut Microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32 (10), 2357–2368 (2018).
Jaramillo, A. & Castañeda, L. E. Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress. Front. Microbiol. 12, 654108 (2021).
Henry, Y. & Colinet, H. Microbiota disruption leads to reduced cold tolerance in Drosophila flies. Sci. Nat. 105 (9–10), 59 (2018).
Zare, A., Johansson, A. M., Karlsson, E., Delhomme, N. & Stenberg, P. The gut Microbiome participates in transgenerational inheritance of low-temperature responses in Drosophila melanogaster. FEBS Lett. 592 (24), 4078–4086 (2018).
Tran, A. K., Hutchison, W. D. & Asplen, M. K. Morphometric criteria to differentiate Drosophila Suzukii (Diptera: Drosophilidae) seasonal morphs. PloS One. 15 (2), e0228780 (2020).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 (Database issue), D590–D596 (2013).
Chong, J., Liu, P., Zhou, G. & Xia, J. Using Microbiomeanalyst for comprehensive statistical, functional, and meta-analysis of Microbiome data. Nat. Protoc. 15 (3), 799–821 (2020).
Dhariwal, A. et al. A web-based tool for comprehensive statistical, visual and meta-analysis of Microbiome data. Nucleic Acids Res. 45 (W1), W180–W188 (2017).
Douglas, G. M. et al. G. I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38 (6), 685–688 (2020).
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53 (Database issue D1), D672–D677 [PMID:39417505] (2025).
Kanehisa, M. Toward Understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019). [PMID:31441146].
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). [PMID: 10592173].
Oksanen, J. et al. J., vegan: Community ecology package (Version 2.6–10) [R package]. Comprehensive R Archive Network. https://CRAN.R-project.org/package=vegan (2025).
Chandler, J. A., James, P. M., Jospin, G. & Lang, J. M. The bacterial communities of Drosophila Suzukii collected from undamaged cherries. PeerJ 2, e474 (2014).
Lin, Q. et al. Analyses of the gut bacteriomes of four important Drosophila pests. Can. Entomol. 153 (6), 757–773 (2021).
Ferguson, C. T., O’Neill, T. L., Audsley, N. & Isaac, R. E. The sexually dimorphic behaviour of adult Drosophila suzukii: elevated female locomotor activity and loss of siesta is a post-mating response. J. Exp. Biol. 218 (23), 3855–3861 (2015).
Shu, R. et al. N. Sex-dependent effects of the Microbiome on foraging and locomotion in Drosophila Suzukii. Front. Microbiol. 12, 656406 (2021).
Davies, L. R., Loeschcke, V., Schou, M. F., Schramm, A. & Kristensen, T. N. The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability. Sci. Rep. 11 (1), 18850 (2021).
Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14 (3), 801–814 (2020).
Schwanitz, T. W. et al. Molecular and behavioral studies reveal differences in olfaction between winter and summer morphs of Drosophila suzukii. PeerJ 10, e13825 (2022).
Carlini, D. B., Winslow, S. K., Cloppenborg-Schmidt, K. & Baines, J. F. Quantitative Microbiome profiling of honey bee (Apis mellifera) guts is predictive of winter colony loss in Northern Virginia (USA). Sci. Rep. 14 (1), 11021 (2024).
Wallingford, A. K., Rice, K. B., Leskey, T. C. & Loeb, G. M. Overwintering behavior of drosophila suzukii, and potential springtime diets for egg maturation. Environ. Entomol. 47 (5), 1266–1273 (2018).
Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis Pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86 (3), 250–264 (1993).
Männistö, M. K. & Häggblom, M. M. Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst. Appl. Microbiol. 29 (3), 229–243 (2006).
Friedrich, I. et al. First complete genome sequences of Janthinobacterium lividum EIF1 and EIF2 and their comparative genome analysis. Genome Biol. Evol. 12 (10), 1782–1788 (2020).
Park, H., Park, S., Yang, Y. H. & Choi, K. Y. Microbial synthesis of Violacein pigment and its potential applications. Crit. Rev. Biotechnol. 41 (6), 879–901 (2021).
Bandy, A. Ringing bells: Morganella Morganii fights for recognition. Public. Health. 182, 45–50 (2020).
Nikolouli, K., Colinet, H., Stauffer, C. & Bourtzis, K. How the mighty have adapted: genetic and Microbiome changes during laboratory adaptation in the key pest Drosophila Suzukii. Entomologia Generalis 42 (5), 723–732 (2022).
Ren, X. et al. Gut symbiotic bacteria are involved in nitrogen recycling in the tephritid fruit fly Bactrocera dorsalis. BMC Biol. 20 (1), 201 (2022).
Ji, C., Kong, C. X., Mei, Z. L. & Li, J. A review of the anaerobic digestion of fruit and vegetable waste. Appl. Biochem. Biotechnol. 183 (3), 906–922 (2017).
Nordgård, A. S. R. et al. Anaerobic digestion of pig manure supernatant at high ammonia concentrations characterized by high abundances of Methanosaeta and non-euryarchaeotal archaea. Sci. Rep. 7 (1), 15077 (2017).
Xia, X. J., Wu, W., Chen, J. P. & Shan, H. W. The gut bacterium Serratia marcescens mediates detoxification of organophosphate pesticide in Riptortus Pedestris by microbial degradation. J. Appl. Entomol. 147 (6), 406–415 (2023).
AbdEl-Mongy, M. A., Rahman, M. F. & Shukor, M. Y. Isolation and characterization of a Molybdenum-reducing and Carbamate-degrading Serratia sp. strain Amr-4 in soils from Egypt. Asian J. Plant. Biology. 3 (2), 25–32 (2021).
Lidor, O. et al. Frateuria defendens sp. nov., bacterium isolated from the yellows grapevine’s disease vector hyalesthes obsoletus. Int. J. Syst. Evol. MicroBiol. 69 (5), 1281–1287 (2019).
Naama-Amar, A. et al. Antimicrobial activity of metabolites secreted by the endophytic bacterium frateuria defendens. Plants 9 (1), 72 (2020).
Naama-Amar, A., Gerchman, Y., Kruh, I., Naor, V. & L., & Evaluation of the biocontrol activity of frateuria defendens-derived metabolites against mollicutes. Plant Signal. Behav. 17 (1), 2070355 (2022).
Swings, J. The genus Frateuria. In (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H. & Stackebrandt, E.) The Prokaryotes (844–845). Springer. (2006).
Zhao, M., Lin, X. & Guo, X. The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals. Insects 13 (7), 583 (2022).
Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29 (23), 4692–4705 (2020).
Martín-Maldonado, B. & Esperón-Fajardo, F. Can Suttonella Ornithocola entail a potential hazard to songbirds? A systematic review. Eur. J. Wildl. Res. 70 (1), 29 (2024).
Zhang, M. et al. Analysis of the gut microbiota in Suncus murinus, a natural Obesity-Resistant experimental animal. J. Food Sci. Nutr. Res. 7, 44–51 (2024).
Simhadri, R. K. et al. The gut commensal Microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia. mSphere 2 (5), e00287–e00217 (2017).
Hague, M. T., Caldwell, C. N. & Cooper, B. S. Pervasive effects of Wolbachia on host temperature preference. mBio 11(5), 10-1128 (2020).
Deconninck, G. et al. Wolbachia improves the performance of an invasive fly after a diet shift. J. Pest Sci. 97, 1–13 (2024).
Cattel, J., Martinez, J., Jiggins, F., Mouton, L. & Gibert, P. Wolbachia-mediated protection against viruses in the invasive pest Drosophila Suzukii. Insect Mol. Biol. 25 (5), 595–603 (2016).
Nehme, N. T. et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS pathogens, 3(11), e173 (2007). (2007).
Mure, A. et al. Identification of key yeast species and microbe–microbe interactions impacting larval growth of Drosophila in the wild. eLife 13, e90148 (2024).
Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted wing drosophila (Drosophila suzukii; diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78 (14), 4869–4873 (2012).
Acknowledgements
This work received support and help from FCT/MCTES (LA/P/0008/2020 DOI https://doi.org/10.54499/LA/P/0008/2020, UIDP/50006/2020 DOI https://doi.org/10.54499/UIDP/50006/2020 and UIDB/50006/2020 DOI https://doi.org/10.54499/UIDB50006/2020), through national funds.
Funding
MCS PhD work was supported by Fundação para a Ciência e Tecnologia (FCT), through Grant Number 2021.06319.BD (DOI https://doi.org/10.54499/2021.06319.BD). Research was funded by the FCT DrosuGreen Project (reference PTDC/ASP-PLA/4477/2020).
Author information
Authors and Affiliations
Contributions
Conceptualization, MCS and CS; Methodology, MCS, SS, RJM, and CS; Validation, MCS; Formal Analysis, MCS, SS, RJM, and CS; Investigation, MCS; Resources, CS; Writing – Original Draft Preparation, MCS; Writing – Review & Editing, MCS, SS, RJM, and CS; Visualization, MCS, SS, RJM, and CS; Supervision, SS, RJM, and CS; Project Administration, SS, and CS; Funding Acquisition, CS.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Costa-Santos, M., Sario, S., Mendes, R.J. et al. Seasonal dynamics and core stability of the bacterial microbiome of a Drosophila suzukii wild population. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37656-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37656-y


