Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
An ancient Erysipelothrix rhusiopathiae genome recovered from 1400-year-old human remains in the Northern Caucasus
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

An ancient Erysipelothrix rhusiopathiae genome recovered from 1400-year-old human remains in the Northern Caucasus

  • Andrey A. Kritsky1,
  • Natalia Y. Berezina2,
  • Alexandra O. Ivanova1,
  • Dmitry A. Sutormin3,
  • Egor I. Botsmanov1,
  • Alla A. Perevozchikova2,
  • Anna A. Kadieva4,5,
  • Tatiana R. Tsedilina1,
  • Matvey V. Kolesnik6,
  • Anastasia V. Pavlova1,
  • Sergej V. Demidenko7,
  • Evgeny I. Klimuk1,
  • Alexandra P. Buzhilova2 &
  • …
  • Konstantin V. Severinov1,6,8 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Diseases
  • Evolution
  • Genetics
  • Microbiology

Abstract

Erysipelothrix rhusiopathiae is a pathogenic bacterium infecting both humans and animals and causing erysipeloid, a disease that can leads to osteoarticular conditions, abscesses, and septic arthritis. Here, we report the sequenced ancient genome of E. rhusiopathiae obtained from teeth of an Alan child who lived in the North Caucasus in 6th–7th centuries AD. Differential diagnosis using paleopathological methods suggested that the child suffered from tuberculosis. However, analysis of tooth pulp revealed no signs of M. tuberculosis but a massive presence of ancient E. rhusiopathiae DNA. A complete high-quality ancient E. rhusiopathiae genome was assembled and found to belong to clade II of the extant E. rhusiopathiae phylogeny tree, nested in a subclade of closely related modern isolates infecting wild boars and domestic pigs. The ancient genome belongs to serotype 5 and encodes the key E. rhusiopathiae virulence factor SpaA group 1 along with vancomycin resistance genes. We propose that infection with E. rhusiopathiae, alone or together with other pathogens, is the likely cause of skeletal pathologies observed.

Data availability

Data is provided within the manuscript and supplementary files. The raw sequence data was uploaded in NCBI, under the Bioproject: PRJNA1119393, BioSample: SAMN41652521, SRA: SRR29344859. The assembled genome ERA_01 have NCBI accession number JBEFKQ000000000, spaA gene: PP928806 and serotype-determining region: PP993147. Direct links: Bioproject: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1119393/. BioSample: https://www.ncbi.nlm.nih.gov/biosample/SAMN41652521/. SRA: https://www.ncbi.nlm.nih.gov/sra/SRR29344859/. WGS: https://www.ncbi.nlm.nih.gov/nuccore/JBEFKQ000000000/. spaA gene: https://www.ncbi.nlm.nih.gov/nuccore/PP928806.1/. serotype-determining region: https://www.ncbi.nlm.nih.gov/nuccore/PP993147.1/

References

  1. Duchêne, S., Ho, S. Y., Carmichael, A. G., Holmes, E. C. & Poinar, H. The recovery, interpretation and use of ancient pathogen genomes. Curr. Biol. 30, R1215–R1231 (2020).

    Google Scholar 

  2. Malyarchuk, A. B. et al. Genomics of ancient pathogens: First advances and prospects. Biochem. Mosc. 87, 242–258 (2022).

    Google Scholar 

  3. Brooke, C. J. & Riley, T. V. Erysipelothrix rhusiopathiae: Bacteriology, epidemiology and clinical manifestations of an occupational pathogen. J. Med. Microbiol. 48, 789–799 (1999).

    Google Scholar 

  4. Reboli, A. C. & Farrar, W. E. Erysipelothrix rhusiopathiae: An occupational pathogen. Clin. Microbiol. Rev. 2, 354–359 (1989).

    Google Scholar 

  5. Wang, Q., Chang, B. J. & Riley, T. V. Erysipelothrix rhusiopathiae. Vet. Microbiol. 140, 405–417 (2010).

    Google Scholar 

  6. Rostamian, M., Rahmati, D. & Akya, A. Clinical manifestations, associated diseases, diagnosis, and treatment of human infections caused by Erysipelothrix rhusiopathiae: A systematic review. Germs 12, 16 (2022).

    Google Scholar 

  7. Kheng, M. et al. Sacro-iliite à Erysipelothrix rhusiopathiae révélant une endocardite tricuspide, premier cas rapporté sur le bouclier des guyanes: Cas clinique et revue de la littérature. [Sacroiliitis with Erysipelothrix Rhusiopathiae revealing tricuspid endocarditis, the first case reported on the Guiana Shield: Clinical case and review of the literature]. Médecine Tropicale et Santé Internationale 2, mtsi-v2i3 (2022).

    Google Scholar 

  8. Upapan, P. & Chayakulkeeree, M. Erysipelothrix rhusiopathiae bacteremia without endocarditis associated with psoas abscess: The first case report in Thailand. J. Med. Assoc. Thai. 97, S232–S236 (2014).

    Google Scholar 

  9. Neumann, D., Hafner, M. & Dorn, U. Septic arthritis caused by Erysipelotrix rhusiopathiae: Case report and review of the literature. Zeitschrift fur Orthopadie und Unfallchirurgie 147, 740–742 (2009).

    Google Scholar 

  10. Goossens, J. et al. Polyarticular septic arthritis caused by Erysipelothrix rhusiopathiae infection. Intern. Med. J. 52, (2022).

  11. Mukhopadhyay, C., Shah, H., Vandana, K., Munim, F. & Vijayan, S. A child with Erysipelothrix arthritis–beware of the little known. Asian Pac. J. Trop. Biomed. 2, 503–504 (2012).

    Google Scholar 

  12. Alawdah, L. S., Campbell, J. N., Pollock, N. & Watnick, P. I. Erysipelothrix rhusiopathiae suppurative arthritis in a 12-year-old boy after an unusual fresh water exposure. Pediatr. Infect. Dis. J. 36, 431–433 (2017).

    Google Scholar 

  13. Veraldi, S., Girgenti, V., Dassoni, F. & Gianotti, R. Erysipeloid: A review. Clin. Exp. Dermatol. 34, 859–862 (2009).

    Google Scholar 

  14. Spiteri, M. & Taylor-Robinson, A. Erysipelothrix rhusiopathiae: An important cause of bacterial disease in farmed pigs and an occupational pathogen of humans. Int. J. Clin. Med. Microbiol. https://doi.org/10.15344/2456-4028/2018/134 (2018).

    Google Scholar 

  15. Zautner, A. E. et al. Human Erysipelothrix rhusiopathiae infection via bath water–case report and genome announcement. Front. Cell. Infect. Microbiol. 12, 981477 (2022).

    Google Scholar 

  16. Ogawa, Y. et al. The genome of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, reveals new insights into the evolution of Firmicutes and the organism’s intracellular adaptations. J. Bacteriol. 193, 2959–2971 (2011).

    Google Scholar 

  17. Kwok, A. H., Li, Y., Jiang, J., Jiang, P. & Leung, F. C. Complete genome assembly and characterization of an outbreak strain of the causative agent of swine erysipelas–Erysipelothrix rhusiopathiae SY1027. BMC Microbiol. 14, 1–12 (2014).

    Google Scholar 

  18. Tang, H., Xie, J., Wang, L., Liu, F. & Wu, J. Complete genome sequence of Erysipelothrix rhusiopathiae strain GXBY-1 isolated from acute swine erysipelas outbreaks in South China. Genomics Data 8, 70–71 (2016).

    Google Scholar 

  19. Grazziotin, A. L. et al. Comparative genomics of a novel clade shed light on the evolution of the genus Erysipelothrix and characterise an emerging species. Sci. Rep. 11, 3383 (2021).

    Google Scholar 

  20. Li, Y. et al. Proteomic and transcriptomic analyses of swine pathogen Erysipelothrix rhusiopathiae reveal virulence repertoire. PLoS ONE 11, e0159462 (2016).

    Google Scholar 

  21. Borrathybay, E., Gong, F., Zhang, L. & Nazierbieke, W. Role of surface protective antigen A in the pathogenesis of Erysipelothrix rhusiopathiae strain C43065. J. Microbiol. Biotechnol. 25, 206–216 (2015).

    Google Scholar 

  22. Wu, C. et al. The C-terminal repeat units of SpaA mediate adhesion of Erysipelothrix rhusiopathiae to host cells and regulate its virulence. Biology (Basel) 11, 1010. https://doi.org/10.3390/biology11071010 (2022).

    Google Scholar 

  23. Groeschel, M. et al. An unusual case of Erysipelothrix rhusiopathiae prosthetic joint infection from the Canadian arctic: Whole genome sequencing unable to identify a zoonotic source. BMC Infect. Dis. 19, 1–7 (2019).

    Google Scholar 

  24. Shimoji, Y. et al. Development of a multiplex PCR-based assay for rapid serotyping of Erysipelothrix species. J. Clin. Microbiol. 58, e00315-e320 (2020).

    Google Scholar 

  25. Janßen, T. et al. A combinational approach of multilocus sequence typing and other molecular typing methods in unravelling the epidemiology of Erysipelothrix rhusiopathiae strains from poultry and mammals. Vet. Res. 46, 1–15 (2015).

    Google Scholar 

  26. Forde, T. et al. Genomic analysis of the multi-host pathogen Erysipelothrix rhusiopathiae reveals extensive recombination as well as the existence of three generalist clades with wide geographic distribution. BMC Genomics 17, 1–15 (2016).

    Google Scholar 

  27. Forde, T. L. et al. Genomic and immunogenic protein diversity of Erysipelothrix rhusiopathiae isolated from pigs in Great Britain: Implications for vaccine protection. Front. Microbiol. 11, 418 (2020).

    Google Scholar 

  28. Forde, T. L. et al. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates. Front. Microbiol. 7, 1759 (2016).

    Google Scholar 

  29. Söderlund, R. et al. Comparative genome analysis of Erysipelothrix rhusiopathiae isolated from domestic pigs and wild boars suggests host adaptation and selective pressure from the use of antibiotics. Microbial Genomics 6, e000412 (2020).

    Google Scholar 

  30. Webster, J. et al. Population structure and genomic characteristics of Australian Erysipelothrix rhusiopathiae reveals unobserved diversity in the Australian pig industry. Microorganisms 11, 297 (2023).

    Google Scholar 

  31. López, M. J. B. Estudio paleogenómico de patógenos humanos en población prehispánica y colonial de México. PhD Thesis. In [Paleogenomic study of human pathogens in the pre-Hispanic and colonial population of Mexico] (Universidad Nacional Autónoma de México, Ciudad de México, México, 2021).

  32. Kusliy, M. A. 2022. Geneticheskoe raznoobrazie drevnikh i sovremennykh loshadey Altaya i sopredel’nykh territoriy. PhD Thesis. In [Genetic diversity of ancient and modern horses of Altai and adjacent territories] (Novosibirsk, Russia, 2022).

  33. Kadieva, A. A. & Demidenko, S. V. Pogrebenie rannesarmatskogo vremeni iz mogil’nika Zayukovo-3 (Kabardino-Balkarskaya respublika) [Burial of the early sarmatian time from the Zayukovo-3 burial ground (Kabardino-Balkaria)]. Caucasology 2, 33–40 (2017).

    Google Scholar 

  34. Korobov, D.S. Modelirovanie sel’skokhozyajstvennyj ugodij alan Kislovodskoj kotloviny V–VIII vv. In [Modeling the agricultural lands of the Alanians in the Kislovodsk Basin in the 5th–8th centuries] pp 249–268 (In the circle of ideas: Models and technologies for historical reconstruction, Russia, Novosibirsk, 2010).

  35. Massler, M., Schour, I. & Poncher, H. Developmental pattern of the child as reflected in the calcification pattern of the teeth. Am. J. Dis. Child. 62, 33–67 (1941).

    Google Scholar 

  36. Alekseev, V. P. & Debec, G. F. Kraniometrija: Metodika Antropologicheskich Issledovanij [Craniometry. Methods of Anthropological Studies]. (Nauka, Moscow, 1964).

  37. Alekseev, V. P. Osteometrija: Metodika Antropologicheskih Issledovanij [Osteometry: Methodology of Anthropological Research] (Nauka, 1966).

    Google Scholar 

  38. Stloukal, M. & Hanáková, H. Die länge der längsknochen altslawischer bevölkerungen unter besonderer berücksichtigung von wachstumsfragen. Homo 29, 53–69 (1978).

    Google Scholar 

  39. Ubelaker, D. H. Estimating age at death from immature human skeletons: An overview. J. Forensic Sci. 32, 1254–1263 (1987).

    Google Scholar 

  40. Brothwell, D. R. Digging up bones: The excavation, treatment, and study of human skeletal remains (Cornell University Press, New York, 1981).

    Google Scholar 

  41. Lovejoy, C. O., Russell, K. F. & Harrison, M. L. Long bone growth velocity in the Libben population. Am. J. Hum. Biol. 2, 533–541 (1990).

    Google Scholar 

  42. Szilvássy, J., Kritscher, H. & Hauser, G. Eine urnenfelderzeitliche mehrfachbestattung in stillfried an der march, NÖ. [An Urnfield period multiple burial in Stillfried an der March, Lower Austria] in Stillfried: Archäologie—anthropologie (eds. Felgenhauer, F., Szilvássy, J., Kritscher, H. & Hauser, G.) vol. 3 9–76 (Veröffentlichungen des Museums für Ur- und Frühgeschichte Stillfried, Stillfried, 1988).

  43. Rose, J. C. et al. Skeletal database committee recommendations. Paleopathology newsletter supplement (1991).

  44. Cox, M. & Mays, S. Human osteology: In archaeology and Forensic science (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  45. Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).

    Google Scholar 

  46. Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Google Scholar 

  47. Keller, M. & Scheib, C. L. Decontamination of tooth roots/petrous bone cores for ancient DNA extraction. (2023).

  48. Neumann, G. U., Valtueña, A. A., Fellows Yates, J., Stahl, R. & Brandt, G. Tooth sampling from the inner pulp chamber for ancient DNA extraction v.1. (2020).

  49. Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Google Scholar 

  50. Clavel, P. et al. Improving the extraction of ancient Yersinia pestis genomes from the dental pulp. Iscience 26, (2023).

  51. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta 2, e107 (2023).

    Google Scholar 

  52. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13 (2019).

    Google Scholar 

  53. Ma, B. et al. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. NatureCommunications 14, 7318 (2023).

    Google Scholar 

  54. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  55. Picard toolkit. Broad Institute, GitHub repository (2019).

  56. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Google Scholar 

  57. Borry, M., Hübner, A., Rohrlach, A. B. & Warinner, C. PyDamage: Automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9, e11845 (2021).

    Google Scholar 

  58. Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).

    Google Scholar 

  59. Weissensteiner, H. et al. Contamination detection in sequencing studies using the mitochondrial phylogeny. Genome Res. 31, 309–316 (2021).

    Google Scholar 

  60. Ralf, A., Montiel González, D., Zhong, K. & Kayser, M. Yleaf: Software for human Y-chromosomal Haplogroup inference from next-generation sequencing data. Mol. Biol. Evol. 35, 1291–1294 (2018).

    Google Scholar 

  61. Chen, H., Lu, Y., Lu, D. & Xu, S. Y-LineageTracker: A high-throughput analysis framework for Y-chromosomal next-generation sequencing data. BMC Bioinform. 22, 114 (2021).

    Google Scholar 

  62. Renaud, G. et al. Schmutzi: Estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Google Scholar 

  63. Müller, R., Roberts, C. A. & Brown, T. A. Complications in the study of ancient tuberculosis: Non-specificity of IS6110 PCRs. STAR Sci. Technol. Archaeol. Res. 1, 1–8 (2015).

    Google Scholar 

  64. Dec, M., Nowak, T., Webster, J. & Wódz, K. Serotypes, antimicrobial susceptibility, and potential mechanisms of resistance gene transfer in Erysipelothrix rhusiopathiae strains from waterfowl in Poland. Int. J. Mol. Sci. 25, 12192 (2024).

    Google Scholar 

  65. Huang, W. et al. First identification of human infection with Erysipelothrix piscisicarius by metagenomic next-generation sequencing. Emerg. Microbes Infect. 11, 2781–2784 (2022).

    Google Scholar 

  66. Kucsera, G. Proposal for standardization of the designations used for serotypes of Erysipelothrix rhusiopathiae (Migula) buchanan. Int. J. Syst. Evol. Microbiol. 23, 184–188 (1973).

    Google Scholar 

  67. Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Google Scholar 

  68. Seemann, T. Snippy: Fast bacterial variant calling from NGS reads. (2015).

  69. Haeseler, A. von, Schmidt, H. A., Bui, M. Q. & Nguyen, L. T. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. (2014).

  70. Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly path-o-gen). Virus Evol. 2, vew007 (2016).

    Google Scholar 

  71. Duvaud, S. et al. Expasy, the swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 49, W216–W227 (2021).

    Google Scholar 

  72. Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Google Scholar 

  73. Okonechnikov, K., Golosova, O., Fursov, M. & Team, U. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).

  74. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  75. Shiraiwa, K., Ogawa, Y., Nishikawa, S., Eguchi, M. & Shimoji, Y. Identification of serovar 1a, 1b, 2, and 5 strains of Erysipelothrix rhusiopathiae by a conventional gel-based PCR. Vet. Microbiol. 225, 101–104 (2018).

    Google Scholar 

  76. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  77. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Google Scholar 

  78. Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    Google Scholar 

  79. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Google Scholar 

  80. Developers, P. Pysam: A python module for reading, manipulating, and analyzing genomic data. (2009).

  81. Aziz, R. K. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 1–15 (2008).

    Google Scholar 

  82. Grant, J. R. et al. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51, W484–W492 (2023).

    Google Scholar 

  83. Guellil, M. aDNA-BAMPlotter. (2023).

  84. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Google Scholar 

  85. Yachida, W. PyGenomeViz web. (2023).

  86. Mastykova A.V. Zhenskiy kostyum zentral’nogo i zapadnogo predkavkaz’ja v kontse IV - seredine VI v.n.e. In [Female Costume of the Central and Western Ciscaucasia in the Late 4th - Mid-6th Centuries A.D.] 500 (Institute of Archaeology RAS, Moscow, 2009).

  87. Guinet, B. et al. Ancient host-associated microbes obtained from mammoth remains. Cell 2, S0092-8674(25)00917-1 (2025).

  88. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Google Scholar 

  89. Eroshenko, G. A. et al. Yersinia pestis strains of ancient phylogenetic branch 0. ANT are widely spread in the high-mountain plague foci of Kyrgyzstan. PLoS ONE 12, e0187230 (2017).

    Google Scholar 

  90. Long, G. S. et al. A 14th century CE Brucella melitensis genome and the recent expansion of the western Mediterranean clade. PLoS Pathog. 19, e1011538 (2023).

    Google Scholar 

  91. Orgeur, M., Sous, C., Madacki, J. & Brosch, R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 48, fuae006 (2024).

    Google Scholar 

  92. Shimoji, Y. et al. Wild boars: A potential source of Erysipelothrix rhusiopathiae infection in Japan. Microbiol. Immunol. 63, 465–468 (2019).

    Google Scholar 

  93. Menardo, F., Duchêne, S., Brites, D. & Gagneux, S. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog. 15, e1008067 (2019).

    Google Scholar 

  94. Eaton, K. et al. Plagued by a cryptic clock: Insight and issues from the global phylogeny of Yersinia pestis. Commun. Biol. 6, 23 (2023).

    Google Scholar 

  95. Ortner, D. J. Identification of pathological conditions in human skeletal remains Vol. 645 (Academic Press, Amsterdam, 2003).

    Google Scholar 

  96. Pálfi, G. et al. Unusual spinal tuberculosis in an Avar age skeleton (csongrád-felgyő, Ürmös-tanya, hungary): A morphological and biomolecular study. Tuberculosis 95, S29–S34 (2015).

    Google Scholar 

  97. Romney, M., Cheung, S. & Montessori, V. Erysipelothrix rhusiopathiae endocarditis and presumed osteomyelitis. Can. J. Dis. Med. Microbiol. 12, 254–256 (2001).

    Google Scholar 

  98. Lorenz, M. L., Bouton, T. C. & Caliendo, A. M. First reported case of vertebral osteomyelitis due to Erysipelothrix rhusiopathiae. IDCases 11, 3–5 (2018).

    Google Scholar 

  99. Maillard, A. et al. Osteoarticular infections caused by Erysipelothrix rhusiopathiae: Case report and literature review. In Open forum infectious diseases vol. 8 ofab461 (Oxford University Press US, 2021).

  100. Andrychowski, J., Jasielski, P., Netczuk, T. & Czernicki, Z. Empyema in spinal canal in thoracic region, abscesses in paravertebral space, spondylitis: In clinical course of zoonosis Erysipelothrix rhusiopathiae. Eur. Spine J. 21, 557–563 (2012).

    Google Scholar 

  101. Meric, M. & Keceli Ozcan, S. Erysipelothrix rhusiopathiae pneumonia in an immunocompetent patient. J. Med. Microbiol. 61, 450–451 (2012).

    Google Scholar 

  102. Denes, E., Camilleri, Y., Fiorenza, F. & Martin, C. First case of osteomyelitis due to Erysipelothrix rhusiopathiae: Pubic osteomyelitis in a gored farmer. Int. J. Infect. Dis. 30, 133–134 (2015).

    Google Scholar 

  103. Umana, E. Erysipelothrix rhusiopathiae: An unusual pathogen of infective endocarditis. Int. J. Cardiol. 88, 297–299 (2003).

    Google Scholar 

  104. Shimoji, Y. Pathogenicity of Erysipelothrix rhusiopathiae: Virulence factors and protective immunity. Microbes Infect. 2, 965–972 (2000).

    Google Scholar 

  105. Seru, L. V. et al. Genomic characterization and virulence gene profiling of Erysipelothrix rhusiopathiae isolated from widespread muskox mortalities in the Canadian arctic archipelago. BMC Genomics 14, 691 (2024).

    Google Scholar 

  106. Challa, H. R., Tayade, A. C., Venkatesh, S. & Nambi, P. S. Erysipelothrix bacteremia; Is endocarditis a rule?. J. Global Infect. Dis. 15, 31–34 (2023).

    Google Scholar 

  107. Volpicelli, L., Oliva, A. & Venditti, M. Did the updated duke criteria missed Erysipelothrix rhusiopathiae from the list of typical microorganisms causing infective endocarditis?. Infez. Med. 31, 425 (2023).

    Google Scholar 

  108. Mai, B. H. A., Drancourt, M. & Aboudharam, G. Ancient dental pulp: Masterpiece tissue for paleomicrobiology. Mol. Genet. Genomic Med. 8, e1202 (2020).

    Google Scholar 

  109. Principe, L. et al. Erysipelothrix rhusiopathiae bacteremia without endocarditis: Rapid identification from positive blood culture by MALDI-TOF mass spectrometry. A case report and literature review. Infect. Dis. Rep. 8, 6368 (2016).

    Google Scholar 

  110. Nielsen, J. J., Blomberg, B., Gaı̈ni, S. & Lundemoen, S. Aortic valve endocarditis with Erysipelothrix rhusiopathiae: A rare zoonosis. Infect. Dis. Rep. 10, 7770 (2018).

    Google Scholar 

  111. Hua, P. et al. Erysipelothrix rhusiopathiae-induced aortic valve endocarditis: Case report and literature review. Int. J. Clin. Exp. Med. 8, 730 (2015).

    Google Scholar 

  112. Kobayashi, K. et al. Erysipelothrix rhusiopathiae bacteremia following a cat bite. IDCases 18, e00631 (2019).

    Google Scholar 

  113. Artamonov M.I. Istorija Hazar. [The History of the Khazars]. 523 (Published by the Hermitage Museum, Leningrad 1962).

  114. Korobov D.S. Alany Severnogo Kavkaza: Etnos, Archeologija, Paleogenetika. [Alans of the North Caucasus: Ethnos, Archeology, Paleogenetics]. 156 (Nestor-Istoriya, Saint Petersburg, 2019).

  115. Recht, J., Schuenemann, V. J. & Sánchez-Villagra, M. R. Host diversity and origin of zoonoses: The ancient and the new. Animals 10, 1672 (2020).

    Google Scholar 

  116. Bendrey, R. & Martin, D. Zoonotic diseases: New directions in human–animal pathology. Int. J. Osteoarchaeol. 32, 548–552 (2022).

    Google Scholar 

  117. Weiss, R. A. & Sankaran, N. Emergence of epidemic diseases: Zoonoses and other origins. Faculty Rev. 11, 2 (2022).

    Google Scholar 

  118. Hudson, C., Butler, R. & Sikes, D. Arthritis in the prehistoric southeastern United States: Biological and cultural variables. Am. J. Phys. Anthropol. 43, 57–62 (1975).

    Google Scholar 

  119. O’Connor, T. P. & O’Connor, T. The archaeology of animal bones (Texas A&M University Press, Texas, 2000).

    Google Scholar 

  120. Teegen, W. R. & Schultz, M. Trauma in Starigard/Oldenburg (Northern Germany). In San Antonio meeting report: 27th annual meeting of the paleopathology association (San Antonio, Texas, 2000).

Download references

Acknowledgements

Morphological research was carried out under partial support of MSU Shared Research Equipment Center “Technologies for obtaining new nanostructured materials and their complex study”, National Project “Science” and MSU Program of Development. This work was funded by the Russian Science Foundation (Project No. 25-18-00322).

Funding

Russian Science Foundation, 25-18-00322.

Author information

Authors and Affiliations

  1. Biotech Campus LLC, Moscow, Russia

    Andrey A. Kritsky, Alexandra O. Ivanova, Egor I. Botsmanov, Tatiana R. Tsedilina, Anastasia V. Pavlova, Evgeny I. Klimuk & Konstantin V. Severinov

  2. Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia

    Natalia Y. Berezina, Alla A. Perevozchikova & Alexandra P. Buzhilova

  3. Skolkovo Institute of Science and Technology, Moscow, Russia

    Dmitry A. Sutormin

  4. State Historical Museum, Moscow, Russia

    Anna A. Kadieva

  5. Scientific and Innovative Center “Natural Science Methods in Archeology, Anthropology and Archeography” of the Kabardino-Balkarian Scientific Center RAS, Nalchik, Russia

    Anna A. Kadieva

  6. Institute of Gene Biology RAS, Moscow, Russia

    Matvey V. Kolesnik & Konstantin V. Severinov

  7. Institute of Archaeology RAS, Moscow, Russia

    Sergej V. Demidenko

  8. Rutgers University, Waksman Institute, Piscataway, USA

    Konstantin V. Severinov

Authors
  1. Andrey A. Kritsky
    View author publications

    Search author on:PubMed Google Scholar

  2. Natalia Y. Berezina
    View author publications

    Search author on:PubMed Google Scholar

  3. Alexandra O. Ivanova
    View author publications

    Search author on:PubMed Google Scholar

  4. Dmitry A. Sutormin
    View author publications

    Search author on:PubMed Google Scholar

  5. Egor I. Botsmanov
    View author publications

    Search author on:PubMed Google Scholar

  6. Alla A. Perevozchikova
    View author publications

    Search author on:PubMed Google Scholar

  7. Anna A. Kadieva
    View author publications

    Search author on:PubMed Google Scholar

  8. Tatiana R. Tsedilina
    View author publications

    Search author on:PubMed Google Scholar

  9. Matvey V. Kolesnik
    View author publications

    Search author on:PubMed Google Scholar

  10. Anastasia V. Pavlova
    View author publications

    Search author on:PubMed Google Scholar

  11. Sergej V. Demidenko
    View author publications

    Search author on:PubMed Google Scholar

  12. Evgeny I. Klimuk
    View author publications

    Search author on:PubMed Google Scholar

  13. Alexandra P. Buzhilova
    View author publications

    Search author on:PubMed Google Scholar

  14. Konstantin V. Severinov
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.A.K.—Conceptualisation, Methodology, Writing the original draft, Formal analysis, Investigation, Data curation, Review and editing, N.Y.B.—Writing the original draft, Investigation, Data curation, A.O.I.—Writing the original draft, Investigation, Review, Formal analysis, Visualisation, Software, D.A.S—Writing the original draft, Formal analysis, Investigation, Software, E.I.B.—Methodology, Writing the original draft, Investigation, A.A.P.—Writing the original draft, Investigation, A.A.K.—Resources, Review and editing, T.R.T. – Writing the original draft, Investigation, M.V.K.—Writing the original draft, Investigation, Software, Review, A.V.P.—Writing the original draft, Investigation, S.V.D.—Resources, Review and editing, E.I.K.—Resources, Review and editing, A.P.B.—Conceptualisation, Supervision, Resources, Review and editing, K.V.S.—Conceptualisation, Supervision, Resources, Review and editing.

Corresponding authors

Correspondence to Andrey A. Kritsky or Konstantin V. Severinov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Supplementary Material 9

Supplementary Material 10

Supplementary Material 11

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kritsky, A.A., Berezina, N.Y., Ivanova, A.O. et al. An ancient Erysipelothrix rhusiopathiae genome recovered from 1400-year-old human remains in the Northern Caucasus. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37742-1

Download citation

  • Received: 03 July 2025

  • Accepted: 24 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37742-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology