Abstract
Erysipelothrix rhusiopathiae is a pathogenic bacterium infecting both humans and animals and causing erysipeloid, a disease that can leads to osteoarticular conditions, abscesses, and septic arthritis. Here, we report the sequenced ancient genome of E. rhusiopathiae obtained from teeth of an Alan child who lived in the North Caucasus in 6th–7th centuries AD. Differential diagnosis using paleopathological methods suggested that the child suffered from tuberculosis. However, analysis of tooth pulp revealed no signs of M. tuberculosis but a massive presence of ancient E. rhusiopathiae DNA. A complete high-quality ancient E. rhusiopathiae genome was assembled and found to belong to clade II of the extant E. rhusiopathiae phylogeny tree, nested in a subclade of closely related modern isolates infecting wild boars and domestic pigs. The ancient genome belongs to serotype 5 and encodes the key E. rhusiopathiae virulence factor SpaA group 1 along with vancomycin resistance genes. We propose that infection with E. rhusiopathiae, alone or together with other pathogens, is the likely cause of skeletal pathologies observed.
Data availability
Data is provided within the manuscript and supplementary files. The raw sequence data was uploaded in NCBI, under the Bioproject: PRJNA1119393, BioSample: SAMN41652521, SRA: SRR29344859. The assembled genome ERA_01 have NCBI accession number JBEFKQ000000000, spaA gene: PP928806 and serotype-determining region: PP993147. Direct links: Bioproject: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1119393/. BioSample: https://www.ncbi.nlm.nih.gov/biosample/SAMN41652521/. SRA: https://www.ncbi.nlm.nih.gov/sra/SRR29344859/. WGS: https://www.ncbi.nlm.nih.gov/nuccore/JBEFKQ000000000/. spaA gene: https://www.ncbi.nlm.nih.gov/nuccore/PP928806.1/. serotype-determining region: https://www.ncbi.nlm.nih.gov/nuccore/PP993147.1/
References
Duchêne, S., Ho, S. Y., Carmichael, A. G., Holmes, E. C. & Poinar, H. The recovery, interpretation and use of ancient pathogen genomes. Curr. Biol. 30, R1215–R1231 (2020).
Malyarchuk, A. B. et al. Genomics of ancient pathogens: First advances and prospects. Biochem. Mosc. 87, 242–258 (2022).
Brooke, C. J. & Riley, T. V. Erysipelothrix rhusiopathiae: Bacteriology, epidemiology and clinical manifestations of an occupational pathogen. J. Med. Microbiol. 48, 789–799 (1999).
Reboli, A. C. & Farrar, W. E. Erysipelothrix rhusiopathiae: An occupational pathogen. Clin. Microbiol. Rev. 2, 354–359 (1989).
Wang, Q., Chang, B. J. & Riley, T. V. Erysipelothrix rhusiopathiae. Vet. Microbiol. 140, 405–417 (2010).
Rostamian, M., Rahmati, D. & Akya, A. Clinical manifestations, associated diseases, diagnosis, and treatment of human infections caused by Erysipelothrix rhusiopathiae: A systematic review. Germs 12, 16 (2022).
Kheng, M. et al. Sacro-iliite à Erysipelothrix rhusiopathiae révélant une endocardite tricuspide, premier cas rapporté sur le bouclier des guyanes: Cas clinique et revue de la littérature. [Sacroiliitis with Erysipelothrix Rhusiopathiae revealing tricuspid endocarditis, the first case reported on the Guiana Shield: Clinical case and review of the literature]. Médecine Tropicale et Santé Internationale 2, mtsi-v2i3 (2022).
Upapan, P. & Chayakulkeeree, M. Erysipelothrix rhusiopathiae bacteremia without endocarditis associated with psoas abscess: The first case report in Thailand. J. Med. Assoc. Thai. 97, S232–S236 (2014).
Neumann, D., Hafner, M. & Dorn, U. Septic arthritis caused by Erysipelotrix rhusiopathiae: Case report and review of the literature. Zeitschrift fur Orthopadie und Unfallchirurgie 147, 740–742 (2009).
Goossens, J. et al. Polyarticular septic arthritis caused by Erysipelothrix rhusiopathiae infection. Intern. Med. J. 52, (2022).
Mukhopadhyay, C., Shah, H., Vandana, K., Munim, F. & Vijayan, S. A child with Erysipelothrix arthritis–beware of the little known. Asian Pac. J. Trop. Biomed. 2, 503–504 (2012).
Alawdah, L. S., Campbell, J. N., Pollock, N. & Watnick, P. I. Erysipelothrix rhusiopathiae suppurative arthritis in a 12-year-old boy after an unusual fresh water exposure. Pediatr. Infect. Dis. J. 36, 431–433 (2017).
Veraldi, S., Girgenti, V., Dassoni, F. & Gianotti, R. Erysipeloid: A review. Clin. Exp. Dermatol. 34, 859–862 (2009).
Spiteri, M. & Taylor-Robinson, A. Erysipelothrix rhusiopathiae: An important cause of bacterial disease in farmed pigs and an occupational pathogen of humans. Int. J. Clin. Med. Microbiol. https://doi.org/10.15344/2456-4028/2018/134 (2018).
Zautner, A. E. et al. Human Erysipelothrix rhusiopathiae infection via bath water–case report and genome announcement. Front. Cell. Infect. Microbiol. 12, 981477 (2022).
Ogawa, Y. et al. The genome of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, reveals new insights into the evolution of Firmicutes and the organism’s intracellular adaptations. J. Bacteriol. 193, 2959–2971 (2011).
Kwok, A. H., Li, Y., Jiang, J., Jiang, P. & Leung, F. C. Complete genome assembly and characterization of an outbreak strain of the causative agent of swine erysipelas–Erysipelothrix rhusiopathiae SY1027. BMC Microbiol. 14, 1–12 (2014).
Tang, H., Xie, J., Wang, L., Liu, F. & Wu, J. Complete genome sequence of Erysipelothrix rhusiopathiae strain GXBY-1 isolated from acute swine erysipelas outbreaks in South China. Genomics Data 8, 70–71 (2016).
Grazziotin, A. L. et al. Comparative genomics of a novel clade shed light on the evolution of the genus Erysipelothrix and characterise an emerging species. Sci. Rep. 11, 3383 (2021).
Li, Y. et al. Proteomic and transcriptomic analyses of swine pathogen Erysipelothrix rhusiopathiae reveal virulence repertoire. PLoS ONE 11, e0159462 (2016).
Borrathybay, E., Gong, F., Zhang, L. & Nazierbieke, W. Role of surface protective antigen A in the pathogenesis of Erysipelothrix rhusiopathiae strain C43065. J. Microbiol. Biotechnol. 25, 206–216 (2015).
Wu, C. et al. The C-terminal repeat units of SpaA mediate adhesion of Erysipelothrix rhusiopathiae to host cells and regulate its virulence. Biology (Basel) 11, 1010. https://doi.org/10.3390/biology11071010 (2022).
Groeschel, M. et al. An unusual case of Erysipelothrix rhusiopathiae prosthetic joint infection from the Canadian arctic: Whole genome sequencing unable to identify a zoonotic source. BMC Infect. Dis. 19, 1–7 (2019).
Shimoji, Y. et al. Development of a multiplex PCR-based assay for rapid serotyping of Erysipelothrix species. J. Clin. Microbiol. 58, e00315-e320 (2020).
Janßen, T. et al. A combinational approach of multilocus sequence typing and other molecular typing methods in unravelling the epidemiology of Erysipelothrix rhusiopathiae strains from poultry and mammals. Vet. Res. 46, 1–15 (2015).
Forde, T. et al. Genomic analysis of the multi-host pathogen Erysipelothrix rhusiopathiae reveals extensive recombination as well as the existence of three generalist clades with wide geographic distribution. BMC Genomics 17, 1–15 (2016).
Forde, T. L. et al. Genomic and immunogenic protein diversity of Erysipelothrix rhusiopathiae isolated from pigs in Great Britain: Implications for vaccine protection. Front. Microbiol. 11, 418 (2020).
Forde, T. L. et al. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates. Front. Microbiol. 7, 1759 (2016).
Söderlund, R. et al. Comparative genome analysis of Erysipelothrix rhusiopathiae isolated from domestic pigs and wild boars suggests host adaptation and selective pressure from the use of antibiotics. Microbial Genomics 6, e000412 (2020).
Webster, J. et al. Population structure and genomic characteristics of Australian Erysipelothrix rhusiopathiae reveals unobserved diversity in the Australian pig industry. Microorganisms 11, 297 (2023).
López, M. J. B. Estudio paleogenómico de patógenos humanos en población prehispánica y colonial de México. PhD Thesis. In [Paleogenomic study of human pathogens in the pre-Hispanic and colonial population of Mexico] (Universidad Nacional Autónoma de México, Ciudad de México, México, 2021).
Kusliy, M. A. 2022. Geneticheskoe raznoobrazie drevnikh i sovremennykh loshadey Altaya i sopredel’nykh territoriy. PhD Thesis. In [Genetic diversity of ancient and modern horses of Altai and adjacent territories] (Novosibirsk, Russia, 2022).
Kadieva, A. A. & Demidenko, S. V. Pogrebenie rannesarmatskogo vremeni iz mogil’nika Zayukovo-3 (Kabardino-Balkarskaya respublika) [Burial of the early sarmatian time from the Zayukovo-3 burial ground (Kabardino-Balkaria)]. Caucasology 2, 33–40 (2017).
Korobov, D.S. Modelirovanie sel’skokhozyajstvennyj ugodij alan Kislovodskoj kotloviny V–VIII vv. In [Modeling the agricultural lands of the Alanians in the Kislovodsk Basin in the 5th–8th centuries] pp 249–268 (In the circle of ideas: Models and technologies for historical reconstruction, Russia, Novosibirsk, 2010).
Massler, M., Schour, I. & Poncher, H. Developmental pattern of the child as reflected in the calcification pattern of the teeth. Am. J. Dis. Child. 62, 33–67 (1941).
Alekseev, V. P. & Debec, G. F. Kraniometrija: Metodika Antropologicheskich Issledovanij [Craniometry. Methods of Anthropological Studies]. (Nauka, Moscow, 1964).
Alekseev, V. P. Osteometrija: Metodika Antropologicheskih Issledovanij [Osteometry: Methodology of Anthropological Research] (Nauka, 1966).
Stloukal, M. & Hanáková, H. Die länge der längsknochen altslawischer bevölkerungen unter besonderer berücksichtigung von wachstumsfragen. Homo 29, 53–69 (1978).
Ubelaker, D. H. Estimating age at death from immature human skeletons: An overview. J. Forensic Sci. 32, 1254–1263 (1987).
Brothwell, D. R. Digging up bones: The excavation, treatment, and study of human skeletal remains (Cornell University Press, New York, 1981).
Lovejoy, C. O., Russell, K. F. & Harrison, M. L. Long bone growth velocity in the Libben population. Am. J. Hum. Biol. 2, 533–541 (1990).
Szilvássy, J., Kritscher, H. & Hauser, G. Eine urnenfelderzeitliche mehrfachbestattung in stillfried an der march, NÖ. [An Urnfield period multiple burial in Stillfried an der March, Lower Austria] in Stillfried: Archäologie—anthropologie (eds. Felgenhauer, F., Szilvássy, J., Kritscher, H. & Hauser, G.) vol. 3 9–76 (Veröffentlichungen des Museums für Ur- und Frühgeschichte Stillfried, Stillfried, 1988).
Rose, J. C. et al. Skeletal database committee recommendations. Paleopathology newsletter supplement (1991).
Cox, M. & Mays, S. Human osteology: In archaeology and Forensic science (Cambridge University Press, Cambridge, 2000).
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).
Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Keller, M. & Scheib, C. L. Decontamination of tooth roots/petrous bone cores for ancient DNA extraction. (2023).
Neumann, G. U., Valtueña, A. A., Fellows Yates, J., Stahl, R. & Brandt, G. Tooth sampling from the inner pulp chamber for ancient DNA extraction v.1. (2020).
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).
Clavel, P. et al. Improving the extraction of ancient Yersinia pestis genomes from the dental pulp. Iscience 26, (2023).
Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta 2, e107 (2023).
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13 (2019).
Ma, B. et al. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. NatureCommunications 14, 7318 (2023).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Picard toolkit. Broad Institute, GitHub repository (2019).
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
Borry, M., Hübner, A., Rohrlach, A. B. & Warinner, C. PyDamage: Automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ 9, e11845 (2021).
Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).
Weissensteiner, H. et al. Contamination detection in sequencing studies using the mitochondrial phylogeny. Genome Res. 31, 309–316 (2021).
Ralf, A., Montiel González, D., Zhong, K. & Kayser, M. Yleaf: Software for human Y-chromosomal Haplogroup inference from next-generation sequencing data. Mol. Biol. Evol. 35, 1291–1294 (2018).
Chen, H., Lu, Y., Lu, D. & Xu, S. Y-LineageTracker: A high-throughput analysis framework for Y-chromosomal next-generation sequencing data. BMC Bioinform. 22, 114 (2021).
Renaud, G. et al. Schmutzi: Estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
Müller, R., Roberts, C. A. & Brown, T. A. Complications in the study of ancient tuberculosis: Non-specificity of IS6110 PCRs. STAR Sci. Technol. Archaeol. Res. 1, 1–8 (2015).
Dec, M., Nowak, T., Webster, J. & Wódz, K. Serotypes, antimicrobial susceptibility, and potential mechanisms of resistance gene transfer in Erysipelothrix rhusiopathiae strains from waterfowl in Poland. Int. J. Mol. Sci. 25, 12192 (2024).
Huang, W. et al. First identification of human infection with Erysipelothrix piscisicarius by metagenomic next-generation sequencing. Emerg. Microbes Infect. 11, 2781–2784 (2022).
Kucsera, G. Proposal for standardization of the designations used for serotypes of Erysipelothrix rhusiopathiae (Migula) buchanan. Int. J. Syst. Evol. Microbiol. 23, 184–188 (1973).
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Seemann, T. Snippy: Fast bacterial variant calling from NGS reads. (2015).
Haeseler, A. von, Schmidt, H. A., Bui, M. Q. & Nguyen, L. T. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. (2014).
Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly path-o-gen). Virus Evol. 2, vew007 (2016).
Duvaud, S. et al. Expasy, the swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Res. 49, W216–W227 (2021).
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Okonechnikov, K., Golosova, O., Fursov, M. & Team, U. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Shiraiwa, K., Ogawa, Y., Nishikawa, S., Eguchi, M. & Shimoji, Y. Identification of serovar 1a, 1b, 2, and 5 strains of Erysipelothrix rhusiopathiae by a conventional gel-based PCR. Vet. Microbiol. 225, 101–104 (2018).
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Developers, P. Pysam: A python module for reading, manipulating, and analyzing genomic data. (2009).
Aziz, R. K. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 1–15 (2008).
Grant, J. R. et al. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51, W484–W492 (2023).
Guellil, M. aDNA-BAMPlotter. (2023).
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Yachida, W. PyGenomeViz web. (2023).
Mastykova A.V. Zhenskiy kostyum zentral’nogo i zapadnogo predkavkaz’ja v kontse IV - seredine VI v.n.e. In [Female Costume of the Central and Western Ciscaucasia in the Late 4th - Mid-6th Centuries A.D.] 500 (Institute of Archaeology RAS, Moscow, 2009).
Guinet, B. et al. Ancient host-associated microbes obtained from mammoth remains. Cell 2, S0092-8674(25)00917-1 (2025).
Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).
Eroshenko, G. A. et al. Yersinia pestis strains of ancient phylogenetic branch 0. ANT are widely spread in the high-mountain plague foci of Kyrgyzstan. PLoS ONE 12, e0187230 (2017).
Long, G. S. et al. A 14th century CE Brucella melitensis genome and the recent expansion of the western Mediterranean clade. PLoS Pathog. 19, e1011538 (2023).
Orgeur, M., Sous, C., Madacki, J. & Brosch, R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 48, fuae006 (2024).
Shimoji, Y. et al. Wild boars: A potential source of Erysipelothrix rhusiopathiae infection in Japan. Microbiol. Immunol. 63, 465–468 (2019).
Menardo, F., Duchêne, S., Brites, D. & Gagneux, S. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog. 15, e1008067 (2019).
Eaton, K. et al. Plagued by a cryptic clock: Insight and issues from the global phylogeny of Yersinia pestis. Commun. Biol. 6, 23 (2023).
Ortner, D. J. Identification of pathological conditions in human skeletal remains Vol. 645 (Academic Press, Amsterdam, 2003).
Pálfi, G. et al. Unusual spinal tuberculosis in an Avar age skeleton (csongrád-felgyő, Ürmös-tanya, hungary): A morphological and biomolecular study. Tuberculosis 95, S29–S34 (2015).
Romney, M., Cheung, S. & Montessori, V. Erysipelothrix rhusiopathiae endocarditis and presumed osteomyelitis. Can. J. Dis. Med. Microbiol. 12, 254–256 (2001).
Lorenz, M. L., Bouton, T. C. & Caliendo, A. M. First reported case of vertebral osteomyelitis due to Erysipelothrix rhusiopathiae. IDCases 11, 3–5 (2018).
Maillard, A. et al. Osteoarticular infections caused by Erysipelothrix rhusiopathiae: Case report and literature review. In Open forum infectious diseases vol. 8 ofab461 (Oxford University Press US, 2021).
Andrychowski, J., Jasielski, P., Netczuk, T. & Czernicki, Z. Empyema in spinal canal in thoracic region, abscesses in paravertebral space, spondylitis: In clinical course of zoonosis Erysipelothrix rhusiopathiae. Eur. Spine J. 21, 557–563 (2012).
Meric, M. & Keceli Ozcan, S. Erysipelothrix rhusiopathiae pneumonia in an immunocompetent patient. J. Med. Microbiol. 61, 450–451 (2012).
Denes, E., Camilleri, Y., Fiorenza, F. & Martin, C. First case of osteomyelitis due to Erysipelothrix rhusiopathiae: Pubic osteomyelitis in a gored farmer. Int. J. Infect. Dis. 30, 133–134 (2015).
Umana, E. Erysipelothrix rhusiopathiae: An unusual pathogen of infective endocarditis. Int. J. Cardiol. 88, 297–299 (2003).
Shimoji, Y. Pathogenicity of Erysipelothrix rhusiopathiae: Virulence factors and protective immunity. Microbes Infect. 2, 965–972 (2000).
Seru, L. V. et al. Genomic characterization and virulence gene profiling of Erysipelothrix rhusiopathiae isolated from widespread muskox mortalities in the Canadian arctic archipelago. BMC Genomics 14, 691 (2024).
Challa, H. R., Tayade, A. C., Venkatesh, S. & Nambi, P. S. Erysipelothrix bacteremia; Is endocarditis a rule?. J. Global Infect. Dis. 15, 31–34 (2023).
Volpicelli, L., Oliva, A. & Venditti, M. Did the updated duke criteria missed Erysipelothrix rhusiopathiae from the list of typical microorganisms causing infective endocarditis?. Infez. Med. 31, 425 (2023).
Mai, B. H. A., Drancourt, M. & Aboudharam, G. Ancient dental pulp: Masterpiece tissue for paleomicrobiology. Mol. Genet. Genomic Med. 8, e1202 (2020).
Principe, L. et al. Erysipelothrix rhusiopathiae bacteremia without endocarditis: Rapid identification from positive blood culture by MALDI-TOF mass spectrometry. A case report and literature review. Infect. Dis. Rep. 8, 6368 (2016).
Nielsen, J. J., Blomberg, B., Gaı̈ni, S. & Lundemoen, S. Aortic valve endocarditis with Erysipelothrix rhusiopathiae: A rare zoonosis. Infect. Dis. Rep. 10, 7770 (2018).
Hua, P. et al. Erysipelothrix rhusiopathiae-induced aortic valve endocarditis: Case report and literature review. Int. J. Clin. Exp. Med. 8, 730 (2015).
Kobayashi, K. et al. Erysipelothrix rhusiopathiae bacteremia following a cat bite. IDCases 18, e00631 (2019).
Artamonov M.I. Istorija Hazar. [The History of the Khazars]. 523 (Published by the Hermitage Museum, Leningrad 1962).
Korobov D.S. Alany Severnogo Kavkaza: Etnos, Archeologija, Paleogenetika. [Alans of the North Caucasus: Ethnos, Archeology, Paleogenetics]. 156 (Nestor-Istoriya, Saint Petersburg, 2019).
Recht, J., Schuenemann, V. J. & Sánchez-Villagra, M. R. Host diversity and origin of zoonoses: The ancient and the new. Animals 10, 1672 (2020).
Bendrey, R. & Martin, D. Zoonotic diseases: New directions in human–animal pathology. Int. J. Osteoarchaeol. 32, 548–552 (2022).
Weiss, R. A. & Sankaran, N. Emergence of epidemic diseases: Zoonoses and other origins. Faculty Rev. 11, 2 (2022).
Hudson, C., Butler, R. & Sikes, D. Arthritis in the prehistoric southeastern United States: Biological and cultural variables. Am. J. Phys. Anthropol. 43, 57–62 (1975).
O’Connor, T. P. & O’Connor, T. The archaeology of animal bones (Texas A&M University Press, Texas, 2000).
Teegen, W. R. & Schultz, M. Trauma in Starigard/Oldenburg (Northern Germany). In San Antonio meeting report: 27th annual meeting of the paleopathology association (San Antonio, Texas, 2000).
Acknowledgements
Morphological research was carried out under partial support of MSU Shared Research Equipment Center “Technologies for obtaining new nanostructured materials and their complex study”, National Project “Science” and MSU Program of Development. This work was funded by the Russian Science Foundation (Project No. 25-18-00322).
Funding
Russian Science Foundation, 25-18-00322.
Author information
Authors and Affiliations
Contributions
A.A.K.—Conceptualisation, Methodology, Writing the original draft, Formal analysis, Investigation, Data curation, Review and editing, N.Y.B.—Writing the original draft, Investigation, Data curation, A.O.I.—Writing the original draft, Investigation, Review, Formal analysis, Visualisation, Software, D.A.S—Writing the original draft, Formal analysis, Investigation, Software, E.I.B.—Methodology, Writing the original draft, Investigation, A.A.P.—Writing the original draft, Investigation, A.A.K.—Resources, Review and editing, T.R.T. – Writing the original draft, Investigation, M.V.K.—Writing the original draft, Investigation, Software, Review, A.V.P.—Writing the original draft, Investigation, S.V.D.—Resources, Review and editing, E.I.K.—Resources, Review and editing, A.P.B.—Conceptualisation, Supervision, Resources, Review and editing, K.V.S.—Conceptualisation, Supervision, Resources, Review and editing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Kritsky, A.A., Berezina, N.Y., Ivanova, A.O. et al. An ancient Erysipelothrix rhusiopathiae genome recovered from 1400-year-old human remains in the Northern Caucasus. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37742-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37742-1