Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Aeroponic root leachate (ARL)-induced hatching as a sustainable strategy for the management of Globodera rostochiensis in potato (Solanum tuberosum L.)
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Aeroponic root leachate (ARL)-induced hatching as a sustainable strategy for the management of Globodera rostochiensis in potato (Solanum tuberosum L.)

  • Aarti Bairwa  ORCID: orcid.org/0000-0003-4086-24331,
  • Tanuja Buckseth1,
  • Bhawna Dipta  ORCID: orcid.org/0000-0001-7419-74141,
  • Baljeet Singh  ORCID: orcid.org/0000-0001-7981-66241,
  • Sanjeev Sharma  ORCID: orcid.org/0000-0002-0446-23041,
  • Paresh Chaukhande  ORCID: orcid.org/0000-0001-9105-27352,
  • Ashwani K. Sharma3,
  • Anil K. Choudhary1,
  • Ingudam Bhupenchandra4,
  • Dalamu Dalamu3,
  • Kailash C. Naga  ORCID: orcid.org/0000-0001-6421-44601,
  • Priyank H. Mhatre  ORCID: orcid.org/0000-0002-5205-81705,
  • Sumit Kumar6,
  • S. K. Chakrabarti1 &
  • …
  • Brajesh Singh  ORCID: orcid.org/0000-0002-6653-03171 

Scientific Reports , Article number:  (2026) Cite this article

  • 353 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Environmental sciences
  • Plant sciences

Abstract

One of the major challenges in potato farming across the globe is potato cyst nematodes (PCN). Aeroponic root leachate (ARL),collected from aeroponically grown potato plants, was evaluated for its potential to stimulate Globodera rostochiensis hatching in the absence of a host plant. In vitro assays showed that ARL collected from 30-day-old potato plants induced the highest number of juveniles (J2s) hatching (369 J2s; 48%), far exceeding that induced by root exudate (RE) (105 J2s; 12.6%). Among the tested dilutions, ARL diluted to 50% was most effective (940 J2s; 74.5%), while controls showed no hatching. Pot assays revealed that ARL diluted to 50% and 75% reduced viable eggs by 28.9% and 27.8%, respectively, compared with minimal reductions in controls (tap water; 4.7% and nutrient solution; 6.2%). Field assays (2018–2021) confirmed strong declines in cyst counts across all treatments, with the greatest reduction observed in T3 (ARL diluted to 50%). Initial viable egg populations (235–287 per cyst) declined markedly by 2021, with T3 (ARL diluted to 50%) and T2 (ARL diluted to 75%) showing 46.5% and 44.1% reductions, compared with controls (13.1% in tap water and 11.2% in nutrient solution). In dose-response assays, ARL triggered higher hatching (284 J2s) than α-chaconine (228 J2s at 100 µg/ml) and α-solanine (186 J2s at 1 µg/ml). Further, ARL-assisted potato farming (ARL-APF) showed lower cultivation costs (643.4 USD/ha), energy inputs (34.5 GJ/ha), carbon inputs (1023.2 kg CE/ha), and GHG emissions (3745.9 CO2-e kg/ha) over the conventional potato farming (CPF).

Similar content being viewed by others

Reliability assessment of agricultural sensors evaluated through algal coverage in hydroponic tomato production systems

Article Open access 12 February 2026

Wrap-and-plant technology to manage sustainably potato cyst nematodes in East Africa

Article Open access 28 February 2022

Genome evolution and diversity of wild and cultivated potatoes

Article Open access 08 June 2022

Data availability

All the data generated in this study are included in the manuscript. Additional data are provided in the supplementary file.

References

  1. Kort, J., Ross, H., Rumpenhorst, H. J. & Stone, A. R. An international scheme for identifying and classifying pathotypes of potato cyst-nematodes Globodera rostochiensis and G. pallida. Nematologica 23, 333–339 (1977).

    Google Scholar 

  2. Bairwa, A., Venkatasalam, E. P., Mhatre, P. H., Bhatnagar, A., Sharma, A. K., Dalamu, Dipta, B., Subhash, S. & Sharma, S. Biology and management of nematodes in potato. In Sustainable Management of Potato Pests and Diseases (eds Chakrabarti, S. K., Sharma, S. & Shah, M. A.) 281–307 (Springer, 2022).

    Google Scholar 

  3. Oerke, E. C., Dehne, H. W., Schonbeck, F. & Weber, A. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops (Elsevier, 1994).

  4. Pulavarty, A., Singh, A., Smyth, D., Mehta, J. P., Horgan, K. & Kakouli-Duarte, T. Sustainable management of the potato cyst nematode, Globodera rostochiensis, with two microbial fermentation products. Front. Plant. Sci. 13, 987059 (2022).

    Google Scholar 

  5. Seshadri, A. R. & Sivakumar, C. V. The golden nematode of potatoes (Heterodera rostochiensis Woll. 1923): a threat to potato cultivation in the Nilgiris (Madras State). Madras Agric. J. 49, 281–288 (1962).

    Google Scholar 

  6. Thangaraju, D. Distribution of potato cyst nematodes in Kodaikanal hills, Maduarai district, Tamil Nadu. Indian J. Nematol. 13, 222–223 (1983).

    Google Scholar 

  7. Prasad, K. S. K. & Singh, D. B. Note on the parasitic nematodes associated with potato in Karnataka State, India. Int. Nematol Netw. Newsl. 3, 11–13 (1986).

    Google Scholar 

  8. Ramana, K. V. & Mohandas, C. Occurrence of potato cyst nematode Globodera pallida (Stone 1973) in Kerala. Indian J. Nematol. 18, 141 (1988).

    Google Scholar 

  9. Chandel, Y. S., Bhadu, S. B., Salalia, R., Thakur, S., Kumar, S., Somvanshi, V. S., Mukherjee, A. & Walia, R. K. Prevalence and spread of potato cyst nematodes, Globodera spp. in northern hilly areas of India. Curr. Sci. 118, 1946–1952 (2020).

    Google Scholar 

  10. Carvalho, F. P. Pesticides, environment and food security. Food Energy Secur. 6, 48–60 (2017).

    Google Scholar 

  11. Bairwa, A., Dalamu, Dipta, B., Naga, K. C. & Singh, B. Potato cyst nematode: resistance, management, and quarantine perspectives across the globe. In Approaches for Potato Crop Improvement and Stress Management (eds Khurana, S. M. P., Bradshaw, J. E. & Bhardwaj, V.) 233–247 (Springer, 2024).

    Google Scholar 

  12. Gartner, U., Hein, I., Brown, L. H., Chen, X., Mantelin, S., Sharma, S. K., Dandurand, L. M., Kuhl, J. C., Jones, J. T., Bryan, G. J. & Blok, V. C. Resisting potato cyst nematodes with resistance. Front. Plant. Sci. 25, 12:661194 (2021).

    Google Scholar 

  13. Ochola, J., Cortada, L., Nganga, M., Hassanali, A., Coyne, D. & Torto, B. Mediation of potato-potato cyst nematode, G. rostochiensis interaction by specific root exudate compounds. Front. Plant. Sci. 11, 649 (2020).

    Google Scholar 

  14. Guerrieri, A., Flokova, K., Vlaar, L. E., Schilder, M. L., Kramer, G., Chojnacka, A., van Dijk, Y. R., Bouwmeester, H. J. & Dong, L. UPLC-MS/MS analysis and biological activity of the potato cyst nematode hatching stimulant, solanoeclepin A, in the root exudate of Solanum spp. Planta 254, 112 (2021).

    Google Scholar 

  15. Shimizu, K., Akiyama, R., Okamura, Y., Ogawa, C., Masuda, Y., Sakata, I., Watanabe, B., Sugimoto, Y., Kushida, A., Tanino, K. & Mizutani, M. Solanoeclepin B, a hatching factor for potato cyst nematode. Sci. Adv. 9, eadf4166 (2023).

    Google Scholar 

  16. Schenk, H., Driessen, R. A. J., de Gelder, R. A. J., Goubitz, K., Nieboer, H., Bruggemann-Rotgans, I. E. M. & Diepenhorst, P. Elucidation of the structure of solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal X-ray diffraction. Croat Chem. Acta. 72, 593–606 (1999).

    Google Scholar 

  17. Buckseth, T., Singh, R., Tiwari, J., Sharma, A., Singh, S. & Chakrabarti, S. K. A novel sustainable aeroponic system for healthy seed potato production in India: an update. Indian J. Agric. Sci. 90, 243–248 (2020).

    Google Scholar 

  18. Evans, K. Hatching of potato cyst nematodes in root diffusates collected from twenty-five potato cultivars. Crop Prot. 2, 97–103 (1983).

    Google Scholar 

  19. Fenwick, D. W. Methods for the recovery and counting of cysts of Heterodera schachtii from soil. J. Helminthol. l8, 155–172 (1940).

    Google Scholar 

  20. Li, H., Liu, G., Zhang, D. X., Lin, X., Liu, G., Xu, S., Liu, F. & Mu, W. Wheat root protection from cereal cyst nematode (Heterodera avenae) by fluopyram seed treatment. Plant Dis. 105, 2466–2471 (2021).

    Google Scholar 

  21. Rana, K. S., Choudhary, A. K., Sepat, S., Bana, R. S. & Dass, A. Methodological and Analytical Agronomy 276 (Post Graduate School, IARI, 2014).

  22. Morgan, G. B., Lackey, J. B. & Gilcreas, F. W. Quantitative determination of organic nitrogen in water, sewage, and industrial wastes. Anal. Chem. 29, 833–840 (1957).

    Google Scholar 

  23. Salem, F. B. Determination of phosphate in water samples. Rev. Anal. Chem. 15, 225–236 (1996).

    Google Scholar 

  24. Hemant, U. C. & Pratibha, U. C. Flame photometric estimation of sodium and potassium ion present in water sample of Darna and Godavari river. Int. J. Sci. Eng. 8, 131–136 (2017).

    Google Scholar 

  25. Mitko, K. & Bebek, M. Determination of major elements in saline water samples using a dual-view IC-OES. At. Spectrosc. 21, 77–85 (2000).

    Google Scholar 

  26. Kroese, D., Zasada, I. A. & Ingham, R. E. Comparison of Meldola’s Blue staining and hatching assay with potato root diffusate for assessment of Globodera sp. egg viability. J. Nematol. 43, 182–186 (2011).

    Google Scholar 

  27. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 2, 37–52 (1987).

    Google Scholar 

  28. SAS (Statistical Analysis System) Base SAS® 9.3 Procedures guide: statistical procedures. Cary, NC. (2011).

  29. The pandas development team. pandas-dev/pandas: Pandas 1.2.0. Zenodo (2020).

  30. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  31. Bairwa, A., Venkatasalam, E. P., Mhatre, P. H. & Sharma, S. Introduction of potato cyst nematodes, life cycle and their management through biobased amendment. In Microbial Biotechnology in Crop Protection (eds Kaushal, M. & Prasad, R.) 79–95 (Springer, 2021).

    Google Scholar 

  32. Ngala, B., Mariette, N., Ianszen, M., Dewaegeneire, P., Denis, M. C., Porte, C., Piriou, C., Robilliard, E., Couetil, A., Nguema-Ona, E., Yvin, J. C., Gobert, V., Beury, A., Le Roux, A. C., Montarry, J. & Fournet, S. Hatching induction of cyst nematodes in bare soils drenched with root exudates under controlled conditions. Front. Plant. Sci. 11, 602825 (2021).

    Google Scholar 

  33. Byrne, J., Twomey, U., Maher, N., Devine, K. J. & Jones, P. W. Detection of hatching inhibitors and hatching factor stimulants for golden potato cyst nematode, Globodera rostochiensis, in potato root leachate. Ann. Appl. Biol. 132, 463–472 (1998).

    Google Scholar 

  34. Rawsthorne, D. & Brodie, B. B. Relationship between root growth of potato, root diffusates production, and hatching of Globodera rostochiensis. J. Nematol. 18, 379–384 (1986).

    Google Scholar 

  35. Pudasaini, M. P., Viaene, N. & Moens, M. Hatching of the root-lesion nematode, Pratylenchus penetrans, under the influence of temperature and host. Nematology 10, 47–54 (2008).

    Google Scholar 

  36. Gautier, C., Martinez, L., Fournet, S., Montarry, J., Yvin, J. C., Nguema-Ona, E., Guillerm-Erckelboudt, A. Y., Piriou, C., Linglin, J., Mougel, C. & Lebreton, L. Hatching of Globodera pallida induced by root exudates is not influenced by soil microbiota composition. Front. Microbiol. 11, 536932 (2020).

    Google Scholar 

  37. Vives-Peris, V., Lopez-Climent, M. F., Perez-Clemente, R. M. & Gomez-Cadenas, A. Root involvement in plant responses to adverse environmental conditions. Agronomy 10, 942 (2020).

    Google Scholar 

  38. Larrauri, J. A., Ruperez, P. & Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 45, 1390–1393 (1997).

    Google Scholar 

  39. ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S. & ElMasry, G. Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: a comprehensive overview. Agronomy 13, 1580 (2023).

    Google Scholar 

  40. Islam, M. Z., Park, B. J. & Lee, Y. T. Influence of temperature conditions during growth on bioactive compounds and antioxidant potential of wheat and barley grasses. Foods 10, 2742 (2021).

    Google Scholar 

  41. Devine, K. J. & Jones, P. W. Response of Globodera rostochiensis to exogenously applied hatching factors in soil. Ann. Appl. Biol. 137, 21–29 (2000).

    Google Scholar 

  42. Ryan, A. & Devine, K. J. Comparison of the in-soil hatching responses of Globodera rostochiensis and G. pallida in the presence and absence of the host potato crop cv. British Queen. Nematology 7, 587–597 (2005).

    Google Scholar 

  43. Ryan, N. A. & Jones, P. The ability of rhizosphere bacteria isolated from nematode host and non-host plants to influence the hatch in vitro of the two potato cyst nematode species, Globodera rostochiensis and G. pallida. Nematology 6, 375–387 (2004).

    Google Scholar 

  44. Lettice, E. P. & Jones, P. W. Evaluation of rhizobacterial colonisation and the ability to induce Globodera pallida hatch. Nematology 17, 203–212 (2015).

    Google Scholar 

  45. Devine, K. J. & Jones, P. W. Effects of hatching factors on potato cyst nematode hatch and in-egg mortality in soil and in vitro. Nematology 3, 65–74 (2001).

    Google Scholar 

  46. Choudhary, A. K., Yadav, D. S., Sood, P., Dua, V. K., Singh, A. & Rahi, S. Influence of integrated crop management technology on potato productivity, profitability, energy dynamics and carbon footprints in north-western Himalayas. Potato J. 48, 148–160 (2021).

    Google Scholar 

  47. Ghisalberti, E. L. Steroidal glycoalkaloids: isolation, structure, analysis, and biosynthesis. Nat. Prod. Commun. 1, 859–884 (2006).

    Google Scholar 

  48. Devine, K. J., Byrne, J., Maher, N. & Jones, P. W. Resolution of natural hatching factors for golden potato cyst nematode, Globodera rostochiensis. Ann. Appl. Biol. 129, 323–334 (1996).

    Google Scholar 

  49. Byrne, J. T., Maher, N. J. & Jones, P. W. Comparative responses of Globodera rostochiensis and G. pallida to hatching chemicals. J. Nematol. 33, 195–202 (2001).

    Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the ICAR, New Delhi and ICAR-CPRI, Shimla, Himachal Pradesh, India, for providing institute financial and technical support to carry out this research.

Author information

Authors and Affiliations

  1. ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India

    Aarti Bairwa, Tanuja Buckseth, Bhawna Dipta, Baljeet Singh, Sanjeev Sharma, Anil K. Choudhary, Kailash C. Naga, S. K. Chakrabarti & Brajesh Singh

  2. ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India

    Paresh Chaukhande

  3. Kufri Unit, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171012, India

    Ashwani K. Sharma & Dalamu Dalamu

  4. Central Agricultural University, Lamphelpat, Imphal West, Manipur, 795004, India

    Ingudam Bhupenchandra

  5. ICAR-Central Potato Research Station, Udhagamandalam, Tamil Nadu, 643004, India

    Priyank H. Mhatre

  6. KVK, Mau, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224229, India

    Sumit Kumar

Authors
  1. Aarti Bairwa
    View author publications

    Search author on:PubMed Google Scholar

  2. Tanuja Buckseth
    View author publications

    Search author on:PubMed Google Scholar

  3. Bhawna Dipta
    View author publications

    Search author on:PubMed Google Scholar

  4. Baljeet Singh
    View author publications

    Search author on:PubMed Google Scholar

  5. Sanjeev Sharma
    View author publications

    Search author on:PubMed Google Scholar

  6. Paresh Chaukhande
    View author publications

    Search author on:PubMed Google Scholar

  7. Ashwani K. Sharma
    View author publications

    Search author on:PubMed Google Scholar

  8. Anil K. Choudhary
    View author publications

    Search author on:PubMed Google Scholar

  9. Ingudam Bhupenchandra
    View author publications

    Search author on:PubMed Google Scholar

  10. Dalamu Dalamu
    View author publications

    Search author on:PubMed Google Scholar

  11. Kailash C. Naga
    View author publications

    Search author on:PubMed Google Scholar

  12. Priyank H. Mhatre
    View author publications

    Search author on:PubMed Google Scholar

  13. Sumit Kumar
    View author publications

    Search author on:PubMed Google Scholar

  14. S. K. Chakrabarti
    View author publications

    Search author on:PubMed Google Scholar

  15. Brajesh Singh
    View author publications

    Search author on:PubMed Google Scholar

Contributions

AB and TB conceived the idea and designed the research framework. SS, AKS, SKC, and BrS provided resources and supervision. AB, BD, DD, and KCN performed the laboratory, pot, and field experiments and curated the data. BS, PC, and IB conducted the data analysis. AB, TB, and BD prepared the original manuscript. AB, BD, PC, AKC, PHM, and SK critically reviewed the final manuscript. All authors have approved the submitted version of the manuscript.

Corresponding authors

Correspondence to Aarti Bairwa or Tanuja Buckseth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairwa, A., Buckseth, T., Dipta, B. et al. Aeroponic root leachate (ARL)-induced hatching as a sustainable strategy for the management of Globodera rostochiensis in potato (Solanum tuberosum L.). Sci Rep (2026). https://doi.org/10.1038/s41598-026-37908-x

Download citation

  • Received: 15 October 2025

  • Accepted: 27 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37908-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Aeroponic root leachate (ARL)
  • Carbon footprints
  • Globodera rostochiensis
  • Hatching factors (HFs)
  • Suicide hatching
  • Viable eggs
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene