Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Chronic NH4Cl loading improves glucose tolerance without modifying insulin sensitivity in mice
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Chronic NH4Cl loading improves glucose tolerance without modifying insulin sensitivity in mice

  • Nawel Zaibi1,2,
  • Jessica Montaigne2,
  • Jennifer Baraka-Vidot1 na1,
  • Judith Merrheim1 na1,
  • Claire Devos1 na1,
  • Emilie Caron3,
  • Florent Auger2,
  • Emmanuelle Durand1,
  • Bénédicte Toussaint1,2,
  • Souhila Amanzougarene1,2,
  • Mehdi Derhourhi1,2,
  • Philippe Froguel1,2,4,
  • Amélie Bonnefond1,2,4 na2,
  • Régine Chambrey1 na2 &
  • …
  • Christophe Breton1,2 na2 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Diseases
  • Endocrinology
  • Physiology

Abstract

Acute metabolic acidosis (MA), a feature mostly associated with chronic kidney disease, decreases glucose tolerance and insulin sensitivity. By contrast, the effects of chronic MA on glucose homeostasis remain elusive. Here, we evaluated glucose homeostasis and metabolic parameters in male mice exhibiting chronic MA via long-term NH4Cl administration. Unlike acute MA, chronic MA resulted in lower body weight, increased energy expenditure, lower basal glycemia, improved glucose tolerance without changes in insulin secretion or sensitivity. No overall glucose uptake changes were observed. However, hepatic and intestinal gluconeogenesis were decreased whereas renal endogenous glucose production was increased in mice with chronic MA. The elevated glucose urinary excretion was associated with lower expression of renal sodium/glucose co-transporters. Transcriptomic analysis revealed that chronic MA potentiates anion transport, glucose and lipid metabolism, mitochondrial and oxidative phosphorylation pathways in the kidney. Overall, chronic MA improves glucose tolerance without changes in insulin secretion or sensitivity, likely due to reduced hepatic gluconeogenesis, decreased renal glucose reabsorption and increased energy demands in the kidney.

Similar content being viewed by others

Systematic metabolomic study on the plasma and urine of a mouse model of Alport syndrome

Article Open access 02 October 2025

Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue

Article 11 February 2023

Galantamine improves glycemic control and diabetic nephropathy in Leprdb/db mice

Article Open access 20 September 2023

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary material. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Jager, K. J. et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol. Dial. Transplant 34 (11), 1803–1805 (2019).

    Google Scholar 

  2. Burger, M. Metabolic Acidosis (StatPearls Publishing, 2023).

    Google Scholar 

  3. Chan, J. Y. M., Islahudin, F., Tahir, N. A. M., Makmor-Bakry, M. & Tan, C. H. H. Prevalence, risk factors, and management of metabolic acidosis in chronic kidney disease patients: A multicenter retrospective study in Malaysia. Cureus 16 (3), e56314 (2024).

    Google Scholar 

  4. Adamczak, M. et al. Diagnosis and treatment of metabolic acidosis in patients with chronic kidney disease - position statement of the working group of the polish society of nephrology. Kidney Blood Press Res. 43, 959–962 (2018).

    Google Scholar 

  5. Raphael, K. L. Metabolic acidosis in CKD: core curriculum. Am. J. Kidney Dis. 74, 263–275 (2019).

    Google Scholar 

  6. Souto, G., Donapetry, C., Calvino, J. & Adeva, M. M. Metabolic acidosis-induced insulin resistance and cardiovascular risk. Metab. Syndr. Relat. Disord. 9, 247–253 (2011).

    Google Scholar 

  7. Bellasi, A. et al. Correction of metabolic acidosis improves insulin resistance in chronic kidney disease. BMC Nephrol. 17 (1), 158 (2016).

    Google Scholar 

  8. DiNicolantonio, J. J. & O’Keefe, J. H. Low-grade metabolic acidosis as a driver of insulin resistance. Open Heart 8 (2), (2021).

  9. Kim, H. J. Metabolic Acidosis in chronic kidney disease: pathogenesis, clinical consequences, and treatment. Electrolyte Blood Press 19 (2), 29–37 (2021).

    Google Scholar 

  10. Kriz, W. & LeHir, M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int. 67 (2), 404–419 (2005).

    Google Scholar 

  11. Weiner, I. D. & Verlander, J. W. Renal ammonia metabolism and transport. Compr. Physiol. 3 (1), 201–220 (2013).

    Google Scholar 

  12. Kraut, J. A. & Madias, N. E. Metabolic acidosis: pathophysiology, diagnosis and management. Nat. Rev. Nephrol. 6 (5), 274–285 (2010).

    Google Scholar 

  13. Li, S. et al. Are low levels of serum bicarbonate associated with risk of progressing to impaired fasting glucose/diabetes? A single-centre prospective cohort study in Beijing, China. BMJ Open 8 (7), e019145 (2018).

    Google Scholar 

  14. Mackler, B., Lichenstein, H. & Guest, G. M. Effects of ammonium chloride acidosis on glucose tolerance in dogs. Am. J. Physiol. 168 (1), 125–130 (1952).

    Google Scholar 

  15. Guest, G., Mackler, B. & Knowles, H. J. Effects of acidosis on insulin action and on carbohydrate and mineral metabolism. Diabetes 1 (4), 276–282 (1952).

    Google Scholar 

  16. Weisinger, J., Swenson, R., Greene, W., Taylor, J. & Reaven, G. Comparison of the effects of metabolic acidosis and acute uremia on carbohydrate tolerance. Diabetes 21 (11), 1109–1115 (1972).

    Google Scholar 

  17. Haldane, J. B. S., Wigglesworth, V. B. & Woodrow, C. The effect of reaction changes on human carbohydrate and oxygen metabolism. Proc. R. Soc. London Ser. B, Containing Papers Biol. Charact. 96 (672), 15–28 (1924).

    Google Scholar 

  18. DeFronzo, R. & Beckles, A. Glucose intolerance following chronic metabolic acidosis in man. Am. J. Physiol. 236 (4), 328–334 (1979).

    Google Scholar 

  19. Franch, H. A. et al. Acidosis impairs insulin receptor substrate-1-associated phosphoinositide 3-kinase signaling in muscle cells: consequences on proteolysis. Am. J. Physiol. Renal Physiol. 287 (4), F700–F706 (2004).

    Google Scholar 

  20. May, R., Masud, T., Logue, B., Bailey, J. & England, B. Chronic metabolic acidosis accelerates whole body proteolysis and oxidation in awake rats. Kidney Int. 41 (6), 1535–1542 (1992).

    Google Scholar 

  21. Whittaker, J., Cuthbert, C., Hammond, V. & Alberti, K. The effects of metabolic acidosis in vivo on insulin binding to isolated rat adipocytes. Metabolism 31 (6), 553–557 (1982).

    Google Scholar 

  22. Teta, D. et al. Acidosis downregulates leptin production from cultured adipocytes through a glucose transport-dependent post-transcriptional mechanism. J. Am. Soc. Nephrol. 14 (9), 2248–2254 (2003).

    Google Scholar 

  23. Disthabanchong, S. et al. Metabolic acidosis lowers circulating adiponectin through inhibition of adiponectin gene transcription. Nephrol. Dial Transplant. 26 (2), 592–598 (2011).

    Google Scholar 

  24. Igarashi, M. et al. Effect of acidosis on insulin binding and glucose uptake in isolated rat adipocytes,". Tohoku J. Exp. Med. 169 (3), 205–213 (1993).

    Google Scholar 

  25. Mutel, E. et al. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 60 (12), 3121–3131 (2011).

    Google Scholar 

  26. Ferrannini, E. Learning from glycosuria. Diabetes 60 (3), 695–696 (2011).

    Google Scholar 

  27. Johnsen, L. Ø., Sigad, A., Friis, K. A., Berg, P. M. & Damkier, H. H. NH4Cl-induced metabolic acidosis increases the abundance of HCO3- transporters in the choroid plexus of mice. Front Physiol 15, 1491793 (2024).

    Google Scholar 

  28. Nowik, M., Kampik, N. B., Mihailova, M., Eladari, D. & Wagner, C. A. Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats–species differences and technical considerations. Cell Physiol. Biochem. 26 (6), 1059–1072 (2010).

    Google Scholar 

  29. Fang, Y. W. et al. Chronic metabolic acidosis activates renal tubular sodium chloride cotransporter through angiotension II-dependent WNK4-SPAK phosphorylation pathway. Sci. Rep. 6, 18360 (2016).

    Google Scholar 

  30. Mannon, E. C. et al. Renal mass reduction increases the response to exogenous insulin independent of acid-base status or plasma insulin levels in rats. Am. J. Renal Physiol. 321 (4), F494–F504 (2021).

    Google Scholar 

  31. Jakab, M. et al. The H+/K+ ATPase inhibitor SCH-28080 Inhibits insulin secretion and induces cell death in INS-1E rat insulinoma cells. Cell Physiol. Biochem. 43 (3), 1037–1051 (2017).

    Google Scholar 

  32. Imenez Silva, P. H. & Mohebbi, N. Kidney metabolism and acid-base control: back to the basics. Pflugers Arch. 474 (8), 919–934 (2022).

    Google Scholar 

  33. Iles, R., Cohen, R., Rist, A. & Baron, P. The mechanism of inhibition by acidosis of gluconeogenesis from lactate in rat liver. Biochem. J. 164 (1), 185–191 (1977).

    Google Scholar 

  34. Beech, J., Iles, R. & Cohen, R. Bicarbonate in the treatment of metabolic acidosis: effects on hepatic intracellular pH, gluconeogenesis, and lactate disposal in rats. Metabolism 42 (3), 341–346 (1993).

    Google Scholar 

  35. Minarik, P., Tomaskova, N., Kollarova, M. & Antalik, M. Malate dehydrogenases–structure and function. Gen. Physiol. Biophys. 21 (3), 257–265 (2002).

    Google Scholar 

  36. Aamer, E. et al. Influence of electrode potential, pH and NAD(+) concentration on the electrochemical NADH regeneration. Sci. Rep. 12 (1), 16380 (2022).

    Google Scholar 

  37. She, P. et al. Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes 52 (7), 1649–1654 (2003).

    Google Scholar 

  38. Burgess, S. et al. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J. Biol. Chem. 279 (47), 48941–48949 (2004).

    Google Scholar 

  39. Baldini, N. & Avnet, S. The effects of systemic and local acidosis on insulin resistance and signaling. Int. J. Mol. Sci. 20 (1), 126 (2019).

    Google Scholar 

  40. Holeček, M. Origin and roles of alanine and glutamine in gluconeogenesis in the liver, kidneys, and small intestine under physiological and pathological conditions. Int. J. Mol. Sci. 25 (13), 7037 (2024).

    Google Scholar 

  41. Mithieux, G., Rajas, F. & Gautier-Stein, A. A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis. J. Biol. Chem. 279 (43), 44231–44234 (2004).

    Google Scholar 

  42. Fu, J., Liu, S. & Li, M. Optimal fasting duration for mice as assessed by metabolic status. Sci. Rep. 14, 21509 (2024).

    Google Scholar 

  43. Carper, D., Coué, M., Laurens, C., Langin, D. & Moro, C. Reappraisal of the optimal fasting time for insulin tolerance tests in mice. Mol. Metab. 42, 101058 (2020).

    Google Scholar 

  44. Lee, Y., Lee, Y. & Han, H. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int. Suppl. 72 (106), S27–S35 (2007).

    Google Scholar 

  45. Liman, M. N. P. & Jialal, I. Physiology, Glycosuria (StatPearls Publishing, 2023).

    Google Scholar 

  46. Zhang, J. et al. Macula densa SGLT1-NOS1-tubuloglomerular feedback pathway, a new mechanism for glomerular hyperfiltration during hyperglycemia. J. Am. Soc. Nephrol. 30 (4), 578–593 (2019).

    Google Scholar 

  47. Caudron-Herger, M. & Diederichs, S. 2021 Insights from the degradation mechanism of cyclin D into targeted therapy of the cancer cell cycle. Signal Transduct. Target Ther. 6 (1), 311 (2021).

    Google Scholar 

  48. Guo, Z. Y. et al. The elements of human cyclin D1 promoter and regulation involved. Clin. Epigenet. 2 (2), 63–76 (2011).

    Google Scholar 

  49. Pontoglio, M. et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep. 1 (4), 359–365 (2000).

    Google Scholar 

  50. Freitas, H. et al. Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology 149 (2), 717–724 (2008).

    Google Scholar 

  51. Takesue, H., Hirota, T., Tachimura, M., Tokashiki, A. & Ieiri, I. Nucleosome positioning and gene regulation of the SGLT2 gene in the renal proximal tubular epithelial cells. Mol. Pharmacol. 94 (3), 953–962 (2018).

    Google Scholar 

  52. Bonner, C. et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat. Med. 21 (5), 512–517 (2015).

    Google Scholar 

  53. Marable, S. S., Chung, E. & Park, J.-S. Hnf4a is required for the development of Cdh6-expressing progenitors into proximal tubules in the mouse kidney. J. Am. Soc. Nephrol. 31 (11), 2543–2558 (2020).

    Google Scholar 

  54. Fu, M. et al. Epoxyeicosatrienoic acids improve glucose homeostasis by preventing NF-kappaB-mediated transcription of SGLT2 in renal tubular epithelial cells. Mol. Cell Endocrinol. 523, 111149 (2021).

    Google Scholar 

  55. Tang, L. et al. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 313 (5), E563–E576 (2017).

    Google Scholar 

  56. Terami, N. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE 9 (6), e100777 (2014).

    Google Scholar 

  57. Yao, D., Wang, S., Wang, M. & Lu, W. Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products-nuclear factor-kappaB signaling pathway. Mol. Med. Rep. 18 (4), 3625–3630 (2018).

    Google Scholar 

  58. Faivre, A., Verissimo, T., Auwerx, H., Legouis, D. & de Seigneux, S. Tubular cell glucose metabolism shift during acute and chronic injuries. Front Med (Lausanne) 8, 742072 (2021).

    Google Scholar 

  59. Gao, Y., Nelson, D. W., Banh, T., Yen, M. I. & Yen, C. L. E. Intestine-specific expression of MOGAT2 partially restores metabolic efficiency in Mogat2-deficient mice. J. Lipid Res. 54 (6), 1644–1652 (2013).

    Google Scholar 

  60. Lin, P. H. & Duann, P. Dyslipidemia in kidney disorders: perspectives on mitochondria homeostasis and therapeutic opportunities. Front. Physiol. 11, 1050 (2020).

    Google Scholar 

  61. Sanz, A. B. et al. NF-kappaB in renal inflammation. J. Am. Soc. Nephrol. 21 (8), 1254–1262 (2010).

    Google Scholar 

  62. Verissimo, T. et al. PCK1 is a key regulator of metabolic and mitochondrial functions in renal tubular cells. Am. J. Physiol. Renal Physiol. 324 (6), F532–F543 (2023).

    Google Scholar 

  63. Wang, G. et al. Fat storage-inducing transmembrane proteins: beyond mediating lipid droplet formation. Cell Mol. Biol. Lett. 27 (1), 98 (2022).

    Google Scholar 

  64. Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13 (10), 629–646 (2017).

    Google Scholar 

  65. Gumz, M. L., Lynch, I. J., Greenlee, M. M., Cain, B. D. & Wingo, C. S. The renal H+-K+-ATPases: physiology, regulation, and structure. Am. J. Physiol. Renal Physiol. 298 (1), F12-21 (2010).

    Google Scholar 

  66. Zhao, L. et al. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front. Cell Dev. Biol. 11, 1276217 (2023).

    Google Scholar 

  67. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4 (9), 117 (2003).

    Google Scholar 

  68. Nowik, M. et al. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol. Genom. 32 (3), 322–334 (2008).

    Google Scholar 

  69. Huynh, N. V., Rehage, C. & Hyndman, K. A. Mild dehydration effects on the murine kidney single-nucleus transcriptome and chromatin accessibility. Am. J. Physiol. Renal Physiol. 325 (6), F717–F732 (2023).

    Google Scholar 

  70. Annicotte, J. S. et al. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nat. Cell Biol. 11 (8), 1017–1023 (2009).

    Google Scholar 

  71. Lopez-Cayuqueo, K. I. et al. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis. Kidney Int. 94 (3), 514–523 (2018).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Experimental Resources platform from Lille University, especially CDegraeve, JVergoten, RDehaynin and JDevassine for animal care. We also thank LPinot, and SMeulebrouck for helpful discussions and technical assistance. We would also like to thank Dr Gilles Mithieux and Dr Fabienne Rajas for the anti-G6PC antibody kindly gifted under the Open Material Transfer Agreement (MTA) regulations.

Funding

This work was supported by grants from the French National Research Agency: ANR-16-CE14-0031 to RC, from the Association pour l’utilisation du rein artificiel à la Réunion (AURAR)-Philancia to RC, from the Soutien à l'accueil de Talents de la Recherche Scientifique (STaRS), Région Hauts-de-France to RC, the French National Research Agency (ANR-10-LABX-46 [European Genomics Institute for Diabetes] to PF and AB and ANR-10-EQPX-07-01 [LIGAN-PM]) to PF and AB, and from the National Center for Precision Diabetic Medicine – PreciDIAB, which is jointly supported by the French National Agency for Research (ANR-18-IBHU-0001) to PF and AB, by the European Union (FEDER), by the Hauts-de-France Regional Council and by the European Metropolis of Lille (MEL). AB holds an ERC consolidator grant (OpiO, contract number 101043671).

Author information

Author notes
  1. These authors contributed equally: Jennifer Baraka-Vidot, Judith Merrheim and Claire Devos.

  2. These authors jointly supervised this work: Amélie Bonnefond, Régine Chambrey and Christophe Breton.

Authors and Affiliations

  1. Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France

    Nawel Zaibi, Jennifer Baraka-Vidot, Judith Merrheim, Claire Devos, Emmanuelle Durand, Bénédicte Toussaint, Souhila Amanzougarene, Mehdi Derhourhi, Philippe Froguel, Amélie Bonnefond, Régine Chambrey & Christophe Breton

  2. Université de Lille, Lille, France

    Nawel Zaibi, Jessica Montaigne, Florent Auger, Bénédicte Toussaint, Souhila Amanzougarene, Mehdi Derhourhi, Philippe Froguel, Amélie Bonnefond & Christophe Breton

  3. Université de Lille, Inserm, CHU Lille, U1172 LilNCog-Lille Neuroscience & Cognition, Lille, France

    Emilie Caron

  4. Department of Metabolism, Imperial College London, London, UK

    Philippe Froguel & Amélie Bonnefond

Authors
  1. Nawel Zaibi
    View author publications

    Search author on:PubMed Google Scholar

  2. Jessica Montaigne
    View author publications

    Search author on:PubMed Google Scholar

  3. Jennifer Baraka-Vidot
    View author publications

    Search author on:PubMed Google Scholar

  4. Judith Merrheim
    View author publications

    Search author on:PubMed Google Scholar

  5. Claire Devos
    View author publications

    Search author on:PubMed Google Scholar

  6. Emilie Caron
    View author publications

    Search author on:PubMed Google Scholar

  7. Florent Auger
    View author publications

    Search author on:PubMed Google Scholar

  8. Emmanuelle Durand
    View author publications

    Search author on:PubMed Google Scholar

  9. Bénédicte Toussaint
    View author publications

    Search author on:PubMed Google Scholar

  10. Souhila Amanzougarene
    View author publications

    Search author on:PubMed Google Scholar

  11. Mehdi Derhourhi
    View author publications

    Search author on:PubMed Google Scholar

  12. Philippe Froguel
    View author publications

    Search author on:PubMed Google Scholar

  13. Amélie Bonnefond
    View author publications

    Search author on:PubMed Google Scholar

  14. Régine Chambrey
    View author publications

    Search author on:PubMed Google Scholar

  15. Christophe Breton
    View author publications

    Search author on:PubMed Google Scholar

Contributions

NZ, JB-V and RC conceptualized the study. NZ, JMontaigne, JMerrheim, CD, EC, FA, JB-V, ED, BT and RC performed the investigations. NZ, SA and MD did the formal analyses and data curation. EC, BS, PF, AB and RC contributed to resources. NZ, AB and RC contributed to data visualization. NZ, CB and AB wrote the first draft. NZ and CB supervised the conception of the article. All authors revised the manuscript for intellectual content, and read and approved the final manuscript.

Corresponding authors

Correspondence to Nawel Zaibi or Christophe Breton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaibi, N., Montaigne, J., Baraka-Vidot, J. et al. Chronic NH4Cl loading improves glucose tolerance without modifying insulin sensitivity in mice. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38007-7

Download citation

  • Received: 29 October 2025

  • Accepted: 28 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38007-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gene expression
  • Gluconeogenesis
  • Glucose homeostasis
  • Metabolic parameters
  • pH regulation
  • Renal function
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing