Abstract
Despite the numerous experimented works on the conductivity of carbon black (CB) polymer nanocomposites (PCBs), the modeling methods remain imperfect and require further investigation. Herein, a simple and applicable model for estimating the PCB electrical conductivity is proposed by measurable and meaningful features of CB nanoparticles, interphase, network and tunnelling zone among nearby CBs. Our model also incorporates the significant terms such as the percolation onset, polymer – CB interfacial tension, the percentage of CB and interphase contributing to the network and interphase conductivity (σi). Many experimented conductivities of real PCBs and parametric checkups are used to verify the suggested model. The thickest interphase (t = 20 nm) with the highest conductivity (σi = 400 S/m) yields the conductivity of 7 S/m, while the composite is insulated by the thinnest interphase with the poorest conductivity (t = 3 nm and σi < 250 S/m). Also, the slimmest tunnels (λ = 1 nm) and their poorest polymer resistivity (p = 30 Ω.m) raise the conductivity to 2.2 S/m. However, bigger tunnels (λ > 5.5 nm) highly weaken the conductivity to 0.1 S/m. Accordingly, the characteristics of interphase and tunnels largely handle the conductivity of PCBs.
Data availability
The data that support the findings of this study are available on request from corresponding authors.
References
El-Khiyami, S. S., Ali, H., Ismail, A. & Hafez, R. Tunable physical properties and dye removal application of novel Chitosan polyethylene glycol and polypyrrole/carbon black films. Sci. Rep. 15 (1), 20124 (2025).
Elmaghraby, N. A. et al. Fabrication of carbon black nanoparticles from green algae and sugarcane Bagasse. Sci. Rep. 14 (1), 5542 (2024).
Fernandez, M. G. C., Hakim, M. L., Alfarros, Z., Santos, G. N. C. & Muflikhun, M. A. Nanoengineered polyaniline/carbon black VXC 72 hybridized with woven Abaca for superior electromagnetic interference shielding. Sci. Rep. 15 (1), 14548 (2025).
de Lima, G. E. S. et al. Evaluation of the effects of sonication energy on the dispersion of carbon black nanoparticles (CBN) and properties of self-sensing cementitious composites. J. Mater. Res. Technol. 36, 1283–1293 (2025).
Gao, S. et al. Regulating the electro-dielectric architectures of carbon black-engineered polyester fibers and fabrics for strain sensing and microwave absorption. Compos. Part A: Appl. Sci. Manufac. 196, 109015 (2025).
Laithong, T., Nampitch, T., Ourapeepon, P. & Phetyim, N. Quality improvement of recycled carbon black from waste tire pyrolysis for replacing carbon black N330. Sci. Rep. 15 (1), 23726 (2025).
Lotfy, V. F., Basta, A. H. & Shafik, E. S. Assessment the performance of chemical constituents of agro wastes in production safety alternative carbon black filler in rubber composite purpose. Sci. Rep. 15 (1), 11035 (2025).
Chen, J., Cui, X., Sui, K., Zhu, Y. & Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 140, 99–105 (2017).
Haghgoo, M., Alidoust, A., Ansari, R., Jamali, J. & Hassanzadeh-Aghdam, M. K. Breadth-first search algorithm on the finite element simulation of the electrical resistivity of the carbon black elastomeric pressurized sensor. Compos. Part A: Appl. Sci. Manufac. 187, 108523 (2024).
Zhao, H. et al. Fabrication of Gallic acid electrochemical sensor based on interconnected Super-P carbon black@ mesoporous silica nanocomposite modified glassy carbon electrode. J. Mater. Res. Technol. 24, 2100–2112 (2023).
Lu, X. et al. Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng. Sci. 9 (24), 25–34 (2020).
Zare, Y., Munir, M. T. & Rhee, K. Y. Influences of defective interphase and contact region among nanosheets on the electrical conductivity of polymer graphene nanocomposites. Sci. Rep. 14 (1), 13210 (2024).
Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. New insights to effective carbon nanofiber features due to defective interphase for prediction of tunneling conductivity in composites. Sci. Rep. 15 (1), 34786 (2025).
Zare, Y., Naqvi, M., Rhee, K. Y. & Park, S-J. Simulation of electrical conductivity for polymer carbon nanofiber composites assuming an extended nanofiber by interphase depth and tunneling distance. Sci. Rep. 15 (1), 31623 (2025).
Zare, Y., Munir, M. T. & Rhee, K. Y. A new pattern for conductivity of carbon nanofiber polymer composites with interphase and tunneling parameters. Compos. Part A: Appl. Sci. Manufac. 190, 108721 (2025).
Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. Decrypting of effective resistance for composites of polymer-carbon nanofiber: an applicable approach to regulate the electrical conductivity. J. Mater. Res. Technol. 38, 2105–2112 (2025).
Sharifzadeh, E., Azimi, N. & Mohammadpour, A. H. Aggregated/agglomerated and dispersed randomly oriented wavy CNTs in electrically conductive polymer nanocomposites: impact of dispersion quality and polymer/particle interphase. J. Mater. Res. Technol. 35, 858–868 (2025).
Ekbatani, S., Wang, Y., Huo, S., Papageorgiou, D. & Zhang, H. Nano-engineered hierarchical natural fibre composites with localised cellulose nanocrystals and tailored interphase for improved mechanical properties. Compos. Sci. Technol. 255, 110719 (2024).
Soudmand, B. H., Biglari, H., Fotouhi, M., Seyedzavvar, M. & Choupani, N. A finite element approach for addressing the interphase modulus and size interdependency and its integration into micromechanical elastic modulus prediction in polystyrene/SiO2 nanocomposites. Polymer 309, 127463 (2024).
Zare, Y., Munir, M. T. & Rhee, K. Y. Tensile modulus of polymer Halloysite nanotubes nanocomposites assuming stress transferring through an imperfect interphase. Sci. Rep. 14 (1), 23219 (2024).
Zare, Y., Munir, M. T. & Rhee, K. Y. A novel technique including two steps for modulus prediction in polymer Halloysite nanotube composites. Sci. Rep. 14 (1), 20511 (2024).
Zare, Y., Munir, M. T. & Rhee, K. Y. A novel approach to predict the electrical conductivity of nanocomposites by a weak interphase around graphene network. Sci. Rep. 14 (1), 21514 (2024).
Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. A predictive model for electrical conductivity of polymer carbon nanofiber composites considering nanofiber/interphase network and tunneling dimensions. J. Mater. Res. Technol. 34, 1391–1398 (2025).
Tian, C., Cui, J., Ning, N., Zhang, L. & Tian, M. Quantitative characterization of interfacial properties of carbon black/elastomer nanocomposites and mechanism exploration on their interfacial interaction. Compos. Sci. Technol. 222, 109367 (2022).
Mazaheri, M., Payandehpeyman, J. & Jamasb, S. Modeling of effective electrical conductivity and percolation behavior in conductive-polymer nanocomposites reinforced with spherical carbon black. Appl. Compos. Mater. 29, 695–710 (2022).
Alidoust, A., Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam, M. K. & Jang, S-H. A finite element percolation tunneling approach on the electrical properties of carbon nanotube elastomer nanocomposite pressure sensors. Compos. Part A: Appl. Sci. Manufac. 180, 108111 (2024).
Hadi, Z., Yeganeh, J. K., Munir, M. T., Zare, Y. & Rhee, K. Y. An innovative model for electrical conductivity of MXene polymer nanocomposites by interphase and tunneling characteristics. Compos. Part A: Appl. Sci. Manufac. 186, 108422 (2024).
Abdollahi, F. et al. A predictive model for electrical conductivity of polymer carbon black nanocomposites. Polym. Compos. 46, 7491–7502 (2025).
Boomhendi, M., Vatani, M. & Zare, Y. Predicting of tunneling conductivity for polymer-carbon black nanocomposites by interphase percolation. Sci. Rep. 15 (1), 42322 (2025).
Zare, Y., Naqvi, M., Rhee, K. Y. & Park, S-J. Advancing conductivity modeling: A unified framework for polymer carbon black nanocomposites. J. Mater. Res. Technol. 36, 26–33 (2025).
Haghgoo, M. & Ansari, R. Effect of electro-magneto mode number on CNT/GNP polymer composite quantum tunneling. Funct. Compos. Struct. 7 (2), 025002 (2025).
Haghgoo, M., Ansari, R. & Hassanzadeh-Aghdam, M. K. Augmented electrical conductivity of hybrid graphene nanoplatelets carbon nanotubes polymer nanocomposites by the electro-magnetic field induced subbands. J. Mater. Res. Technol. 34, 2909–2918 (2025).
Haghgoo, M., Ansari, R. & Hassanzadeh-Aghdam, M. Predicting effective electrical resistivity and conductivity of carbon nanotube/carbon black-filled polymer matrix hybrid nanocomposites. J. Phys. Chem. Solids. 161, 110444 (2022).
Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. Multi-scale prediction of effective conductivity for carbon nanofiber polymer composites. J. Mater. Res. Technol. 33, 8895–8902 (2024).
Zare, Y., Munir, M. T. & Rhee, K. Y. Assessment of electrical conductivity of polymer nanocomposites containing a deficient interphase around graphene nanosheet. Sci. Rep. 14 (1), 8737 (2024).
Qu, M., Nilsson, F. & Schubert, D. W. Novel definition of the synergistic effect between carbon nanotubes and carbon black for electrical conductivity. Nanotechnology 30 (24), 245703 (2019).
Gao, Q., Liu, J. & Liu, X. Electrical conductivity and rheological properties of carbon black based conductive polymer composites prior to and after annealing. Polym. Polym. Compos. 29 (9_suppl), S288–S95 (2021).
Rebeque, P. V. et al. Analysis of the electrical conduction in percolative nanocomposites based on castor-oil polyurethane with carbon black and activated carbon nanopowder. Polym. Compos. 40 (1), 7–15 (2019).
Grunlan, J. C., Gerberich, W. W. & Francis, L. F. Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J. Appl. Polym. Sci. 80 (4), 692–705 (2001).
Ram, R., Soni, V. & Khastgir, D. Electrical and thermal conductivity of polyvinylidene fluoride (PVDF)–Conducting carbon black (CCB) composites: validation of various theoretical models. Compos. Part. B: Eng. 185, 107748 (2020).
Ren, D., Zheng, S., Huang, S., Liu, Z. & Yang, M. Effect of the carbon black structure on the stability and efficiency of the conductive network in polyethylene composites. J. Appl. Polym. Sci. 129 (6), 3382–3389 (2013).
Motaghi, A., Hrymak, A. & Motlagh, G. H. Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 132 (13), 41744 (2015).
Chang, E. et al. Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: computational modeling and experimental verification. Compos. Part. B: Eng. 207, 108552 (2021).
Wang, S. et al. Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chem. Eng. J. 411, 128382 (2021).
Lutz, M. P. & Zimmerman, R. W. Effect of the interphase zone on the conductivity or diffusivity of a particulate composite using maxwell’s homogenization method. Int. J. Eng. Sci. 98, 51–59 (2016).
Lutz, M. P., Vig, C. J. & Zimmerman, R. W. Comparison of the Effects of a Graded Interphase and a Homogeneous Interphase on the Macroscopic Properties of a Particulate Composite 10812865251378135 (Mathematics and Mechanics of Solids, 2025).
Khan, T. et al. Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon 176, 602–631 (2021).
Mazaheri, M., Payandehpeyman, J. & Khamehchi, M. A developed theoretical model for effective electrical conductivity and percolation behavior of polymer-graphene nanocomposites with various exfoliated filleted nanoplatelets. Carbon 169, 264–275 (2020).
Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol. 123, 17–31 (2016).
Kang, M-J., Heo, Y-J., Jin, F-L. & Park, S-J. A review: role of interfacial adhesion between carbon Blacks and elastomeric materials. Carbon Lett. 18, 1–10 (2016).
Fenouillot, F., Cassagnau, P. & Majesté, J-C. Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50 (6), 1333–1350 (2009).
Koysuren, O., Yesil, S. & Bayram, G. Effect of surface treatment on electrical conductivity of carbon black filled conductive polymer composites. J. Appl. Polym. Sci. 104 (5), 3427–3433 (2007).
Kassim, S. E., Achour, M., Costa, L. & Lahjomri, F. Modelling the DC electrical conductivity of polymer/carbon black composites. J. Electrostat. 72 (3), 187–191 (2014).
Neffati, R. & Brokken-Zijp, J. Electric conductivity in silicone-carbon black nanocomposites: percolation and variable range hopping on a fractal. Mater. Res. Express. 6 (12), 125058 (2019).
Wang, Y. et al. Microstructural modeling and simulation of a carbon Black-Based conductive polymer A template for the virtual design of a composite material. ACS Omega. 7 (33), 28820–28830 (2022).
Brunella, V., Rossatto, B. G., Mastropasqua, C., Cesano, F. & Scarano, D. Thermal/electrical properties and texture of carbon black PC polymer composites near the electrical percolation threshold. J. Compos. Sci. 5 (8), 212 (2021).
Sharifzadeh, E. & Ader, F. Aggregation/agglomeration dependent percolation threshold of spherical nanoparticles in electrically conductive polymer nanocomposites. Polym. Compos. 46 (3), 2374–2389 (2025).
Hilarius, K. et al. Influence of shear deformation on the electrical and rheological properties of combined filler networks in polymer melts: carbon nanotubes and carbon black in polycarbonate. Polymer 54 (21), 5865–5874 (2013).
Xiu, H. et al. Formation of new electric double percolation via carbon black induced co-continuous like morphology. RSC Adv. 4 (70), 37193–37196 (2014).
Zare, Y., Naqvi, M., Rhee, K. Y. & Park, S-J. Controlling of tunneling resistance in carbon nanofiber polymer composites: A novel equation for polymer tunneling resistivity by quantifiable parameters. J. Mater. Res. Technol. 36, 3949–3957 (2025).
Author information
Authors and Affiliations
Contributions
Y.Z. and N.G. wrote the main manuscript text. J-H.C. and K.Y.R. revised the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Zare, Y., Gharib, N., Choi, JH. et al. Modeling of conductivity for carbon black nanocomposites incorporating network concentration, interphase conductivity and tunneling dimensions. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38008-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38008-6