Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Modeling of conductivity for carbon black nanocomposites incorporating network concentration, interphase conductivity and tunneling dimensions
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

Modeling of conductivity for carbon black nanocomposites incorporating network concentration, interphase conductivity and tunneling dimensions

  • Yasser Zare1,
  • Nima Gharib2,
  • Jin-Hwan Choi3 &
  • …
  • Kyong Yop Rhee3 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Materials science
  • Nanoscience and technology
  • Physics

Abstract

Despite the numerous experimented works on the conductivity of carbon black (CB) polymer nanocomposites (PCBs), the modeling methods remain imperfect and require further investigation. Herein, a simple and applicable model for estimating the PCB electrical conductivity is proposed by measurable and meaningful features of CB nanoparticles, interphase, network and tunnelling zone among nearby CBs. Our model also incorporates the significant terms such as the percolation onset, polymer – CB interfacial tension, the percentage of CB and interphase contributing to the network and interphase conductivity (σi). Many experimented conductivities of real PCBs and parametric checkups are used to verify the suggested model. The thickest interphase (t = 20 nm) with the highest conductivity (σi = 400 S/m) yields the conductivity of 7 S/m, while the composite is insulated by the thinnest interphase with the poorest conductivity (t = 3 nm and σi < 250 S/m). Also, the slimmest tunnels (λ = 1 nm) and their poorest polymer resistivity (p = 30 Ω.m) raise the conductivity to 2.2 S/m. However, bigger tunnels (λ > 5.5 nm) highly weaken the conductivity to 0.1 S/m. Accordingly, the characteristics of interphase and tunnels largely handle the conductivity of PCBs.

Data availability

The data that support the findings of this study are available on request from corresponding authors.

References

  1. El-Khiyami, S. S., Ali, H., Ismail, A. & Hafez, R. Tunable physical properties and dye removal application of novel Chitosan polyethylene glycol and polypyrrole/carbon black films. Sci. Rep. 15 (1), 20124 (2025).

    Google Scholar 

  2. Elmaghraby, N. A. et al. Fabrication of carbon black nanoparticles from green algae and sugarcane Bagasse. Sci. Rep. 14 (1), 5542 (2024).

    Google Scholar 

  3. Fernandez, M. G. C., Hakim, M. L., Alfarros, Z., Santos, G. N. C. & Muflikhun, M. A. Nanoengineered polyaniline/carbon black VXC 72 hybridized with woven Abaca for superior electromagnetic interference shielding. Sci. Rep. 15 (1), 14548 (2025).

    Google Scholar 

  4. de Lima, G. E. S. et al. Evaluation of the effects of sonication energy on the dispersion of carbon black nanoparticles (CBN) and properties of self-sensing cementitious composites. J. Mater. Res. Technol. 36, 1283–1293 (2025).

    Google Scholar 

  5. Gao, S. et al. Regulating the electro-dielectric architectures of carbon black-engineered polyester fibers and fabrics for strain sensing and microwave absorption. Compos. Part A: Appl. Sci. Manufac. 196, 109015 (2025).

    Google Scholar 

  6. Laithong, T., Nampitch, T., Ourapeepon, P. & Phetyim, N. Quality improvement of recycled carbon black from waste tire pyrolysis for replacing carbon black N330. Sci. Rep. 15 (1), 23726 (2025).

    Google Scholar 

  7. Lotfy, V. F., Basta, A. H. & Shafik, E. S. Assessment the performance of chemical constituents of agro wastes in production safety alternative carbon black filler in rubber composite purpose. Sci. Rep. 15 (1), 11035 (2025).

    Google Scholar 

  8. Chen, J., Cui, X., Sui, K., Zhu, Y. & Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 140, 99–105 (2017).

    Google Scholar 

  9. Haghgoo, M., Alidoust, A., Ansari, R., Jamali, J. & Hassanzadeh-Aghdam, M. K. Breadth-first search algorithm on the finite element simulation of the electrical resistivity of the carbon black elastomeric pressurized sensor. Compos. Part A: Appl. Sci. Manufac. 187, 108523 (2024).

    Google Scholar 

  10. Zhao, H. et al. Fabrication of Gallic acid electrochemical sensor based on interconnected Super-P carbon black@ mesoporous silica nanocomposite modified glassy carbon electrode. J. Mater. Res. Technol. 24, 2100–2112 (2023).

    Google Scholar 

  11. Lu, X. et al. Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng. Sci. 9 (24), 25–34 (2020).

    Google Scholar 

  12. Zare, Y., Munir, M. T. & Rhee, K. Y. Influences of defective interphase and contact region among nanosheets on the electrical conductivity of polymer graphene nanocomposites. Sci. Rep. 14 (1), 13210 (2024).

    Google Scholar 

  13. Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. New insights to effective carbon nanofiber features due to defective interphase for prediction of tunneling conductivity in composites. Sci. Rep. 15 (1), 34786 (2025).

    Google Scholar 

  14. Zare, Y., Naqvi, M., Rhee, K. Y. & Park, S-J. Simulation of electrical conductivity for polymer carbon nanofiber composites assuming an extended nanofiber by interphase depth and tunneling distance. Sci. Rep. 15 (1), 31623 (2025).

    Google Scholar 

  15. Zare, Y., Munir, M. T. & Rhee, K. Y. A new pattern for conductivity of carbon nanofiber polymer composites with interphase and tunneling parameters. Compos. Part A: Appl. Sci. Manufac. 190, 108721 (2025).

    Google Scholar 

  16. Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. Decrypting of effective resistance for composites of polymer-carbon nanofiber: an applicable approach to regulate the electrical conductivity. J. Mater. Res. Technol. 38, 2105–2112 (2025).

    Google Scholar 

  17. Sharifzadeh, E., Azimi, N. & Mohammadpour, A. H. Aggregated/agglomerated and dispersed randomly oriented wavy CNTs in electrically conductive polymer nanocomposites: impact of dispersion quality and polymer/particle interphase. J. Mater. Res. Technol. 35, 858–868 (2025).

    Google Scholar 

  18. Ekbatani, S., Wang, Y., Huo, S., Papageorgiou, D. & Zhang, H. Nano-engineered hierarchical natural fibre composites with localised cellulose nanocrystals and tailored interphase for improved mechanical properties. Compos. Sci. Technol. 255, 110719 (2024).

    Google Scholar 

  19. Soudmand, B. H., Biglari, H., Fotouhi, M., Seyedzavvar, M. & Choupani, N. A finite element approach for addressing the interphase modulus and size interdependency and its integration into micromechanical elastic modulus prediction in polystyrene/SiO2 nanocomposites. Polymer 309, 127463 (2024).

    Google Scholar 

  20. Zare, Y., Munir, M. T. & Rhee, K. Y. Tensile modulus of polymer Halloysite nanotubes nanocomposites assuming stress transferring through an imperfect interphase. Sci. Rep. 14 (1), 23219 (2024).

    Google Scholar 

  21. Zare, Y., Munir, M. T. & Rhee, K. Y. A novel technique including two steps for modulus prediction in polymer Halloysite nanotube composites. Sci. Rep. 14 (1), 20511 (2024).

    Google Scholar 

  22. Zare, Y., Munir, M. T. & Rhee, K. Y. A novel approach to predict the electrical conductivity of nanocomposites by a weak interphase around graphene network. Sci. Rep. 14 (1), 21514 (2024).

    Google Scholar 

  23. Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. A predictive model for electrical conductivity of polymer carbon nanofiber composites considering nanofiber/interphase network and tunneling dimensions. J. Mater. Res. Technol. 34, 1391–1398 (2025).

    Google Scholar 

  24. Tian, C., Cui, J., Ning, N., Zhang, L. & Tian, M. Quantitative characterization of interfacial properties of carbon black/elastomer nanocomposites and mechanism exploration on their interfacial interaction. Compos. Sci. Technol. 222, 109367 (2022).

    Google Scholar 

  25. Mazaheri, M., Payandehpeyman, J. & Jamasb, S. Modeling of effective electrical conductivity and percolation behavior in conductive-polymer nanocomposites reinforced with spherical carbon black. Appl. Compos. Mater. 29, 695–710 (2022).

    Google Scholar 

  26. Alidoust, A., Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam, M. K. & Jang, S-H. A finite element percolation tunneling approach on the electrical properties of carbon nanotube elastomer nanocomposite pressure sensors. Compos. Part A: Appl. Sci. Manufac. 180, 108111 (2024).

    Google Scholar 

  27. Hadi, Z., Yeganeh, J. K., Munir, M. T., Zare, Y. & Rhee, K. Y. An innovative model for electrical conductivity of MXene polymer nanocomposites by interphase and tunneling characteristics. Compos. Part A: Appl. Sci. Manufac. 186, 108422 (2024).

    Google Scholar 

  28. Abdollahi, F. et al. A predictive model for electrical conductivity of polymer carbon black nanocomposites. Polym. Compos. 46, 7491–7502 (2025).

    Google Scholar 

  29. Boomhendi, M., Vatani, M. & Zare, Y. Predicting of tunneling conductivity for polymer-carbon black nanocomposites by interphase percolation. Sci. Rep. 15 (1), 42322 (2025).

    Google Scholar 

  30. Zare, Y., Naqvi, M., Rhee, K. Y. & Park, S-J. Advancing conductivity modeling: A unified framework for polymer carbon black nanocomposites. J. Mater. Res. Technol. 36, 26–33 (2025).

    Google Scholar 

  31. Haghgoo, M. & Ansari, R. Effect of electro-magneto mode number on CNT/GNP polymer composite quantum tunneling. Funct. Compos. Struct. 7 (2), 025002 (2025).

    Google Scholar 

  32. Haghgoo, M., Ansari, R. & Hassanzadeh-Aghdam, M. K. Augmented electrical conductivity of hybrid graphene nanoplatelets carbon nanotubes polymer nanocomposites by the electro-magnetic field induced subbands. J. Mater. Res. Technol. 34, 2909–2918 (2025).

    Google Scholar 

  33. Haghgoo, M., Ansari, R. & Hassanzadeh-Aghdam, M. Predicting effective electrical resistivity and conductivity of carbon nanotube/carbon black-filled polymer matrix hybrid nanocomposites. J. Phys. Chem. Solids. 161, 110444 (2022).

    Google Scholar 

  34. Zare, Y., Munir, M. T., Rhee, K. Y. & Park, S-J. Multi-scale prediction of effective conductivity for carbon nanofiber polymer composites. J. Mater. Res. Technol. 33, 8895–8902 (2024).

    Google Scholar 

  35. Zare, Y., Munir, M. T. & Rhee, K. Y. Assessment of electrical conductivity of polymer nanocomposites containing a deficient interphase around graphene nanosheet. Sci. Rep. 14 (1), 8737 (2024).

    Google Scholar 

  36. Qu, M., Nilsson, F. & Schubert, D. W. Novel definition of the synergistic effect between carbon nanotubes and carbon black for electrical conductivity. Nanotechnology 30 (24), 245703 (2019).

    Google Scholar 

  37. Gao, Q., Liu, J. & Liu, X. Electrical conductivity and rheological properties of carbon black based conductive polymer composites prior to and after annealing. Polym. Polym. Compos. 29 (9_suppl), S288–S95 (2021).

    Google Scholar 

  38. Rebeque, P. V. et al. Analysis of the electrical conduction in percolative nanocomposites based on castor-oil polyurethane with carbon black and activated carbon nanopowder. Polym. Compos. 40 (1), 7–15 (2019).

    Google Scholar 

  39. Grunlan, J. C., Gerberich, W. W. & Francis, L. F. Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J. Appl. Polym. Sci. 80 (4), 692–705 (2001).

    Google Scholar 

  40. Ram, R., Soni, V. & Khastgir, D. Electrical and thermal conductivity of polyvinylidene fluoride (PVDF)–Conducting carbon black (CCB) composites: validation of various theoretical models. Compos. Part. B: Eng. 185, 107748 (2020).

    Google Scholar 

  41. Ren, D., Zheng, S., Huang, S., Liu, Z. & Yang, M. Effect of the carbon black structure on the stability and efficiency of the conductive network in polyethylene composites. J. Appl. Polym. Sci. 129 (6), 3382–3389 (2013).

    Google Scholar 

  42. Motaghi, A., Hrymak, A. & Motlagh, G. H. Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 132 (13), 41744 (2015).

    Google Scholar 

  43. Chang, E. et al. Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: computational modeling and experimental verification. Compos. Part. B: Eng. 207, 108552 (2021).

    Google Scholar 

  44. Wang, S. et al. Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks. Chem. Eng. J. 411, 128382 (2021).

    Google Scholar 

  45. Lutz, M. P. & Zimmerman, R. W. Effect of the interphase zone on the conductivity or diffusivity of a particulate composite using maxwell’s homogenization method. Int. J. Eng. Sci. 98, 51–59 (2016).

    Google Scholar 

  46. Lutz, M. P., Vig, C. J. & Zimmerman, R. W. Comparison of the Effects of a Graded Interphase and a Homogeneous Interphase on the Macroscopic Properties of a Particulate Composite 10812865251378135 (Mathematics and Mechanics of Solids, 2025).

  47. Khan, T. et al. Insights to low electrical percolation thresholds of carbon-based polypropylene nanocomposites. Carbon 176, 602–631 (2021).

    Google Scholar 

  48. Mazaheri, M., Payandehpeyman, J. & Khamehchi, M. A developed theoretical model for effective electrical conductivity and percolation behavior of polymer-graphene nanocomposites with various exfoliated filleted nanoplatelets. Carbon 169, 264–275 (2020).

    Google Scholar 

  49. Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol. 123, 17–31 (2016).

    Google Scholar 

  50. Kang, M-J., Heo, Y-J., Jin, F-L. & Park, S-J. A review: role of interfacial adhesion between carbon Blacks and elastomeric materials. Carbon Lett. 18, 1–10 (2016).

    Google Scholar 

  51. Fenouillot, F., Cassagnau, P. & Majesté, J-C. Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50 (6), 1333–1350 (2009).

    Google Scholar 

  52. Koysuren, O., Yesil, S. & Bayram, G. Effect of surface treatment on electrical conductivity of carbon black filled conductive polymer composites. J. Appl. Polym. Sci. 104 (5), 3427–3433 (2007).

    Google Scholar 

  53. Kassim, S. E., Achour, M., Costa, L. & Lahjomri, F. Modelling the DC electrical conductivity of polymer/carbon black composites. J. Electrostat. 72 (3), 187–191 (2014).

    Google Scholar 

  54. Neffati, R. & Brokken-Zijp, J. Electric conductivity in silicone-carbon black nanocomposites: percolation and variable range hopping on a fractal. Mater. Res. Express. 6 (12), 125058 (2019).

    Google Scholar 

  55. Wang, Y. et al. Microstructural modeling and simulation of a carbon Black-Based conductive polymer A template for the virtual design of a composite material. ACS Omega. 7 (33), 28820–28830 (2022).

    Google Scholar 

  56. Brunella, V., Rossatto, B. G., Mastropasqua, C., Cesano, F. & Scarano, D. Thermal/electrical properties and texture of carbon black PC polymer composites near the electrical percolation threshold. J. Compos. Sci. 5 (8), 212 (2021).

    Google Scholar 

  57. Sharifzadeh, E. & Ader, F. Aggregation/agglomeration dependent percolation threshold of spherical nanoparticles in electrically conductive polymer nanocomposites. Polym. Compos. 46 (3), 2374–2389 (2025).

    Google Scholar 

  58. Hilarius, K. et al. Influence of shear deformation on the electrical and rheological properties of combined filler networks in polymer melts: carbon nanotubes and carbon black in polycarbonate. Polymer 54 (21), 5865–5874 (2013).

    Google Scholar 

  59. Xiu, H. et al. Formation of new electric double percolation via carbon black induced co-continuous like morphology. RSC Adv. 4 (70), 37193–37196 (2014).

    Google Scholar 

  60. Zare, Y., Naqvi, M., Rhee, K. Y. & Park, S-J. Controlling of tunneling resistance in carbon nanofiber polymer composites: A novel equation for polymer tunneling resistivity by quantifiable parameters. J. Mater. Res. Technol. 36, 3949–3957 (2025).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran

    Yasser Zare

  2. College of Engineering and Technology, American University of the Middle East, 54200, Egaila, Kuwait

    Nima Gharib

  3. Department of Mechanical Engineering College of Engineering , Kyung Hee University , Yongin, Republic of Korea

    Jin-Hwan Choi & Kyong Yop Rhee

Authors
  1. Yasser Zare
    View author publications

    Search author on:PubMed Google Scholar

  2. Nima Gharib
    View author publications

    Search author on:PubMed Google Scholar

  3. Jin-Hwan Choi
    View author publications

    Search author on:PubMed Google Scholar

  4. Kyong Yop Rhee
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.Z. and N.G. wrote the main manuscript text. J-H.C. and K.Y.R. revised the paper.

Corresponding authors

Correspondence to Yasser Zare, Jin-Hwan Choi or Kyong Yop Rhee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Gharib, N., Choi, JH. et al. Modeling of conductivity for carbon black nanocomposites incorporating network concentration, interphase conductivity and tunneling dimensions. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38008-6

Download citation

  • Received: 30 November 2025

  • Accepted: 28 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-38008-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Polymer nanocomposite
  • Carbon black
  • Conductivity
  • Interphase zone
  • Electron tunneling
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing