Abstract
Pea (Pisum sativum L.), a major legume crop, is affected by various parasites including the pea aphid (Acyrthosiphon pisum Harris). The pea aphid is composed of multiple biotypes, each one being able to feed and reproduce on one or a few legume species. To understand the pea defense mechanisms to a pea adapted and a non-adapted A. pisum biotype, we studied the early molecular responses of four pea genotypes with contrasted levels of resistance, which are controlled primarily by the ApRVII locus. We found that major defense-related phytohormones and their derivatives in pea did not show clear response to aphid infestations. Transcriptomic analyses showed that the number of differentially expressed genes (DEGs) increased over time in pea genotypes infested with pea-adapted aphids, while significantly fewer DEGs were detected in genotypes infested with non-adapted aphids. The most resistant of the four investigated pea genotypes showed the fewest DEGs to both aphid biotypes. Aphid infestation of the three other pea genotypes commonly induced down-regulation of various pathways involved in fundamental biological processes. Comparison of the transcriptional data of pea genotypes identified candidate genes potentially involved in the aphid resistance conferred by ApRVII.
Data availability
The raw RNAseq sequence data reported in the paper have been deposited in NCBI as BioProject: PRJNA1008650.
References
Hawkins, N. J., Bass, C., Dixon, A. & Neve, P. The evolutionary origins of pesticide resistance. Biol. Rev. 94, 135–155 (2019).
James, K. L. P. Transmission of plant viruses by aphid vectors. Mol. Plant. Pathol. 5, 505–511 (2004).
Moreno, A. et al. Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomol. Exp. Appl. 139, 145–153 (2011).
Elzinga, D. A. & Jander, G. The role of protein effectors in plant–aphid interactions. Curr. Opin. Plant. Biol. 16, 451–456 (2013).
Shih, P. Y., Sugio, A. & Simon, J. C. Molecular mechanisms underlying host plant specificity in aphids. Annu. Rev. Entomol. 68, 431–450 (2023).
Shih, P. Y. et al. Pea-adapted biotype of the aphid Acyrthosiphon Pisum induces susceptibility of pea to non-adapted biotype enabling improved feeding and performance. Entomol. Generalis. 43, 389–398 (2023).
Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P. & Kaloshian, I. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc. Natl. Acad. Sci. U S A. 111, 8919–8924 (2014).
Boissot, N. NLRs are highly relevant resistance genes for aphid pests. Curr. Opin. Insect Sci. 56, 101008 (2023).
Contreras, M. P., Lüdke, D., Pai, H., Toghani, A. & Kamoun, S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep. 24, e57495 (2023).
Panstruga, R. & Moscou, M. J. What is the molecular basis of nonhost resistance? Mol. Plant Microbe Interact. 33, 1253–1264 (2020).
Gill, U. S., Lee, S. & Mysore, K. S. Host versus nonhost resistance: Distinct wars with similar arsenals. RVW 105, 580–587 (2015).
Jaouannet, M., Morris, J. A., Hedley, P. E. & Bos, J. I. B. Characterization of Arabidopsis transcriptional responses to different aphid species reveals genes that contribute to host susceptibility and non-host resistance. PLoS Pathog. 11, e1004918 (2015).
MacWilliams, J. R., Nabity, D., Mauck, P. & Kaloshian, I. K. E. Transcriptome analysis of aphid-resistant and susceptible near isogenic lines reveals candidate resistance genes in Cowpea (Vigna unguiculata). BMC Plant Biol. 23, 1–17 (2023).
Le Boulch, P., Poëssel, J. L., Roux, D. & Lugan, R. Molecular mechanisms of resistance to Myzus persicae conferred by the Peach Rm2 gene: A multi-omics view. Front. Plant. Sci 13, 992544 (2022).
Bressani, R. & Elías, L. G. Seed Quality and Nutritional Goals in Pea, Lentil, Faba Bean and Chickpea Breeding (Springer, 1988). https://doi.org/10.1007/978-94-009-2764-3_34
Demler, S. A., de Zoeten, G. A., Adam, G. & Harris, K. F. Pea Enation Mosaic Enamovirus: Properties and Aphid Transmission. The Plant Viruses (Springer, 1996). https://doi.org/10.1007/978-1-4899-1772-0_12
Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J. C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl. Acad. Sci. U S A. 106, 7495–7500 (2009).
Peccoud, J., Mahéo, F., de la Huerta, M., Laurence, C. & Simon, J. C. Genetic characterisation of new host-specialised biotypes and novel associations with bacterial symbionts in the pea aphid complex. Insect Conserv. Divers. 8, 484–492 (2015).
Schwarzkopf, A., Rosenberger, D., Niebergall, M., Gershenzon, J. & Kunert, G. To feed or not to feed: Plant factors located in the epidermis, mesophyll, and sieve elements influence pea aphid’s ability to feed on legume species. PLoS One 8, e75298 (2013).
González, M. G., Simon, J. C., Sugio, A., Ameline, A. & Cherqui, A. Aphid resistance in Pisum affects the feeding behavior of Pea-Adapted and Non-Pea-Adapted biotypes of Acyrthosiphon Pisum differently. Insects 13, 268 (2022).
Nouhaud, P. et al. Identifying genomic hotspots of differentiation and candidate genes involved in the adaptive divergence of pea aphid host races. Mol. Ecol. 27, 3287–3300 (2018).
Boulain, H. et al. Differential expression of candidate salivary effector genes in pea aphid biotypes with distinct host plant specificity. Front. Plant Sci. 10, 1301 (2019).
Louis, J. & Shah, J. Arabidopsis thaliana-Myzus persicae interaction: Shaping the Understanding of plant defense against phloem-feeding aphids. Front. Plant Sci. 4, 213 (2013).
Sanchez-Arcos, C., Reichelt, M., Gershenzon, J. & Kunert, G. Modulation of legume defense signaling pathways by native and non-native pea aphid clones. Front. Plant. Sci. 7, 1872 (2016).
Gao, L. L. et al. Involvement of the octadecanoid pathway in Bluegreen aphid resistance in Medicago truncatula. Mol. Plant Microbe Interact. 20, 82–93 (2007).
Ellis, C., Karafyllidis, I. & Turner, J. G. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant Microbe Interact. 15, 1025–1030 (2007).
Coppola, M. et al. Plant response to feeding aphids promotes aphid dispersal. Entomol. Exp. Appl. 166, 386–394 (2018).
Cao, F. Y., Yoshioka, K. & Desveaux, D. The roles of ABA in plant-pathogen interactions. J. Plant. Res. 124, 489–499 (2011).
Mai, V. C. et al. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–222, 1–12 (2014).
Ollivier, R. et al. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. Theor. Appl. Genet. 135, 1511–1528 (2022).
Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 51, 1411–1422 (2019).
Yang, X. et al. Fortifying crop defenses: unraveling the molecular arsenal against aphids. Hortic. Adv. 2, 1–17 (2024).
Erickson, J., Weckwerth, P., Romeis, T. & Lee, J. What’s new in protein kinase/phosphatase signalling in the control of plant immunity? Essays Biochem. 66, 621–634 (2022).
Chakraborty, P., Biswas, A., Dey, S., Bhattacharjee, T. & Chakrabarty, S. Cytochrome P450 gene families: role in plant secondary metabolites production and plant defense. J. Xenobiot. 13, 402–423 (2023).
Naseem, M., Kaltdorf, M. & Dandekar, T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J. Exp. Bot. 66, 4885–4896 (2015).
Papadopoulou, G. V., Maedicke, A., Grosser, K. & van Dam, N. M. & Martínez-Medina, A. Defence signalling marker gene responses to hormonal elicitation differ between roots and shoots. AoB Plants 10, ply031. https://doi.org/10.1093/aobpla/ply031 (2018).
Beyer, S. F. et al. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci. Rep. 11, 1–15 (2021).
Duhlian, L., Koramutla, M. K., Subramanian, S., Chamola, R. & Bhattacharya, R. Comparative transcriptomics revealed differential regulation of defense related genes in Brassica juncea leading to successful and unsuccessful infestation by aphid species. Sci. Rep. 10, 1–14 (2020).
Medina-Ortega, K. J. & Walker, G. P. Faba bean forisomes can function in defence against generalist aphids. Plant. Cell. Environ. 38, 1167–1177 (2015).
Walker, G. P. Sieve element occlusion: interactions with phloem sap-feeding insects. A review. J. Plant. Physiol. 269, 153582 (2022).
Furch, A. C. U., Hafke, J. B., Schulz, A. & Van Bel, A. J. E. Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia Faba. J. Exp. Bot. 58, 2827–2838 (2007).
Will, T., Tjallingii, W. F., Thönnessen, A. & Van Bel, A. J. E. Molecular sabotage of plant defense by aphid saliva. Proc. Natl. Acad. Sci. U S A. 104, 10536–10541 (2007).
Gutsche, A. et al. Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. Bull. Entomol. Res. 99, 163–173 (2009).
Nebenführ, A. & Dixit, R. Kinesins and myosins: molecular motors that coordinate cellular functions in plants. Annu. Rev. Plant. Biol. 69, 329–361 (2018).
Gu, Y., Zavaliev, R. & Dong, X. Membrane trafficking in plant immunity. Mol. Plant. 10, 1026–1034 (2017).
Li, P. & Day, B. Battlefield cytoskeleton: turning the tide on plant immunity. Mol. Plant Microbe Interact. 32, 25–34 (2019).
Wang, J. et al. The cytoskeleton in plant immunity: Dynamics, regulation, and function. Int. J. Mol. Sci. 23, 15553 (2022).
Lim, G. H., Singhal, R., Kachroo, A. & Kachroo, P. Fatty acid- and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 55, 505–536 (2017).
Kachroo, A. & Kachroo, P. Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 47, 153–176 (2009).
Molina, A. et al. Plant cell wall-mediated disease resistance: current understanding and future perspectives. Mol. Plant. 17, 699–724 (2024).
Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. & Greenberg, J. T. Priming in systemic plant immunity. Science 324, 89–91 (2009).
Djami-Tchatchou, A. T., Ncube, E. N., Steenkamp, P. A. & Dubery, I. A. Similar, but different: structurally related Azelaic acid and hexanoic acid trigger differential metabolomic and transcriptomic responses in tobacco cells. BMC Plant. Biol. 17, 1–15 (2017).
Peccoud, J. et al. Evolutionary history of aphid-plant associations and their role in aphid diversification. C R Biol. 333, 474–487 (2010).
Pinheiro, J. & Bates, D. Linear and nonlinear mixed effects models [R package Nlme version 3.1–166]. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.NLME (2024).
Pinheiro, J. C. B. D. Mixed-Effects Models in S and S-PLUS (2000). https://doi.org/10.1007/B98882
R: The R Project for Statistical Computing. https://www.r-project.org/
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. https://doi.org/10.1007/978-0-387-87458-6 (2009).
Bretz, F., Hothorn, T. & Westfall, P. Multiple comparisons using R. 1–183. https://doi.org/10.1201/9781420010909 (2016).
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).
Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).
Patel, H. et al. nf-core/rnaseq: nf-core/rnaseq v3.14.0 - Hassium Honey Badger. https://doi.org/10.5281/ZENODO.10471647
Andrews, S. & FastQC: A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021).
Wucher, V. et al. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 45, 57–57 (2017).
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
Alves-Carvalho, S. et al. AskoR, A R package for easy RNASeq data analysis. Proc. West. Mark. Ed. Assoc. Conf. 1, 10646 (2021).
Alves Carvalho, S. et al. GitHub - askomics/askoR. https://github.com/askomics/askoR
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, 1–9 (2010).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Alexa, A. & Rahnenführer, J. topGO Enrichment Analysis for Gene Ontology. R package version 2.46.0. (2021).
Rau, A. & Maugis-Rabusseau, C. Transformation and model choice for RNA-seq co-expression analysis. Brief. Bioinform. 19, 425–436 (2018).
Godichon-Baggioni, A., Maugis-Rabusseau, C. & Rau, A. Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data. J. Appl. Stat. 46, 47–65 (2019).
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).
Kanehisa, M. & Goto, S. K. E. G. G. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Pecrix, Y. et al. Whole-genome landscape of Medicago truncatula symbiotic genes. Nat. Plants. 4, 1017–1025 (2018).
Kolde, R. pheatmap. Pretty Heatmaps. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.PHEATMAP (2010).
Chen, H. & Boutros, P. VennDiagram Generate High-Resolution Venn and Euler plots. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.VENNDIAGRAM (2011).
Wickham, H. ggplot2. https://doi.org/10.1007/978-3-319-24277-4 (2016).
Haas, B. GitHub - TransDecoder/TransDecoder. https://github.com/TransDecoder/TransDecoder
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 1–9 (2009).
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Cantalapiedra, C. P., Hern̗andez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, 309–314 (2019).
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
Brooks, M. E. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.EMMEANS (2017).
Acknowledgements
We would like to thank Angélique Lesné and Isabelle Glory for multiplying the pea seeds and providing the material for our experiments. We acknowledge the GenOuest bioinformatics core facility (https://www.genouest.org) for providing the computing infrastructure.
Funding
Different parts of the presented work were funded by Plant2Pro-2018-CharaP, Plant2Pro-2022-R2V2, ANR-P-Aphid (ANR-18-CE20-0021–01), ANR-Mecadapt (ANR-18-CE02-0012), ANR-GreenPeas (ANR-23-CE20-0040-01) and ANR-PeaMUST (ANR-11-BTBR-0002). RO was supported by INRAE-SPE, INRAE-BAP, Région Bretagne PhD grants, ANR-P-Aphid, Région Bretagne mobility grant and Jean-Walter Zellidja grant. The collaboration between MPI and INRAE labs was supported by PHC PROCOPE 2022 N° 46675NL and PROCOPE 2021–2023 ID 57561355.
Author information
Authors and Affiliations
Contributions
RO, MLPN, JCS, AS, MP, PYS, JG, GK contributed to the study conception and design. RO, SR, MG, MP, JG, GK, PYS, MLPN, JCS, AS contributed to the RNAseq data analysis. RO, MP, JG, GK, PYS, MLPN, MG, JCS, AS contributed to the phytohormone data analysis. Material preparation and data collection were performed by RO, MP, PYS, SM, JCS and AS. The manuscript was written by RO, MLPN, MG, JCS and AS.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ollivier, R., Robin, S., Galland, M. et al. Pea transcriptional and phytohormonal responses to adapted and non-adapted aphid biotypes at early stages of infestation. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38098-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38098-2