Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Pea transcriptional and phytohormonal responses to adapted and non-adapted aphid biotypes at early stages of infestation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

Pea transcriptional and phytohormonal responses to adapted and non-adapted aphid biotypes at early stages of infestation

  • Rémi Ollivier1 nAff4,
  • Stéphanie Robin1,2,
  • Marc Galland1,
  • Maria K. Paulmann3,
  • Po-Yuan Shih1 nAff5,
  • Stéphanie Morlière1,
  • Jonathan Gershenzon3,
  • Grit Kunert3,
  • Marie-Laure Pilet-Nayel1,
  • Jean-Christophe Simon1 &
  • …
  • Akiko Sugio1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Plant molecular biology
  • Plant sciences
  • Plant stress responses

Abstract

Pea (Pisum sativum L.), a major legume crop, is affected by various parasites including the pea aphid (Acyrthosiphon pisum Harris). The pea aphid is composed of multiple biotypes, each one being able to feed and reproduce on one or a few legume species. To understand the pea defense mechanisms to a pea adapted and a non-adapted A. pisum biotype, we studied the early molecular responses of four pea genotypes with contrasted levels of resistance, which are controlled primarily by the ApRVII locus. We found that major defense-related phytohormones and their derivatives in pea did not show clear response to aphid infestations. Transcriptomic analyses showed that the number of differentially expressed genes (DEGs) increased over time in pea genotypes infested with pea-adapted aphids, while significantly fewer DEGs were detected in genotypes infested with non-adapted aphids. The most resistant of the four investigated pea genotypes showed the fewest DEGs to both aphid biotypes. Aphid infestation of the three other pea genotypes commonly induced down-regulation of various pathways involved in fundamental biological processes. Comparison of the transcriptional data of pea genotypes identified candidate genes potentially involved in the aphid resistance conferred by ApRVII.

Data availability

The raw RNAseq sequence data reported in the paper have been deposited in NCBI as BioProject: PRJNA1008650.

References

  1. Hawkins, N. J., Bass, C., Dixon, A. & Neve, P. The evolutionary origins of pesticide resistance. Biol. Rev. 94, 135–155 (2019).

    Google Scholar 

  2. James, K. L. P. Transmission of plant viruses by aphid vectors. Mol. Plant. Pathol. 5, 505–511 (2004).

    Google Scholar 

  3. Moreno, A. et al. Aphids secrete watery saliva into plant tissues from the onset of stylet penetration. Entomol. Exp. Appl. 139, 145–153 (2011).

    Google Scholar 

  4. Elzinga, D. A. & Jander, G. The role of protein effectors in plant–aphid interactions. Curr. Opin. Plant. Biol. 16, 451–456 (2013).

    Google Scholar 

  5. Shih, P. Y., Sugio, A. & Simon, J. C. Molecular mechanisms underlying host plant specificity in aphids. Annu. Rev. Entomol. 68, 431–450 (2023).

    Google Scholar 

  6. Shih, P. Y. et al. Pea-adapted biotype of the aphid Acyrthosiphon Pisum induces susceptibility of pea to non-adapted biotype enabling improved feeding and performance. Entomol. Generalis. 43, 389–398 (2023).

    Google Scholar 

  7. Chaudhary, R., Atamian, H. S., Shen, Z., Briggs, S. P. & Kaloshian, I. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc. Natl. Acad. Sci. U S A. 111, 8919–8924 (2014).

    Google Scholar 

  8. Boissot, N. NLRs are highly relevant resistance genes for aphid pests. Curr. Opin. Insect Sci. 56, 101008 (2023).

    Google Scholar 

  9. Contreras, M. P., Lüdke, D., Pai, H., Toghani, A. & Kamoun, S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep. 24, e57495 (2023).

  10. Panstruga, R. & Moscou, M. J. What is the molecular basis of nonhost resistance? Mol. Plant Microbe Interact. 33, 1253–1264 (2020).

    Google Scholar 

  11. Gill, U. S., Lee, S. & Mysore, K. S. Host versus nonhost resistance: Distinct wars with similar arsenals. RVW 105, 580–587 (2015).

  12. Jaouannet, M., Morris, J. A., Hedley, P. E. & Bos, J. I. B. Characterization of Arabidopsis transcriptional responses to different aphid species reveals genes that contribute to host susceptibility and non-host resistance. PLoS Pathog. 11, e1004918 (2015).

  13. MacWilliams, J. R., Nabity, D., Mauck, P. & Kaloshian, I. K. E. Transcriptome analysis of aphid-resistant and susceptible near isogenic lines reveals candidate resistance genes in Cowpea (Vigna unguiculata). BMC Plant Biol. 23, 1–17 (2023).

  14. Le Boulch, P., Poëssel, J. L., Roux, D. & Lugan, R. Molecular mechanisms of resistance to Myzus persicae conferred by the Peach Rm2 gene: A multi-omics view. Front. Plant. Sci 13, 992544 (2022).

  15. Bressani, R. & Elías, L. G. Seed Quality and Nutritional Goals in Pea, Lentil, Faba Bean and Chickpea Breeding (Springer, 1988). https://doi.org/10.1007/978-94-009-2764-3_34

  16. Demler, S. A., de Zoeten, G. A., Adam, G. & Harris, K. F. Pea Enation Mosaic Enamovirus: Properties and Aphid Transmission. The Plant Viruses (Springer, 1996). https://doi.org/10.1007/978-1-4899-1772-0_12

  17. Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J. C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl. Acad. Sci. U S A. 106, 7495–7500 (2009).

    Google Scholar 

  18. Peccoud, J., Mahéo, F., de la Huerta, M., Laurence, C. & Simon, J. C. Genetic characterisation of new host-specialised biotypes and novel associations with bacterial symbionts in the pea aphid complex. Insect Conserv. Divers. 8, 484–492 (2015).

    Google Scholar 

  19. Schwarzkopf, A., Rosenberger, D., Niebergall, M., Gershenzon, J. & Kunert, G. To feed or not to feed: Plant factors located in the epidermis, mesophyll, and sieve elements influence pea aphid’s ability to feed on legume species. PLoS One 8, e75298 (2013).

  20. González, M. G., Simon, J. C., Sugio, A., Ameline, A. & Cherqui, A. Aphid resistance in Pisum affects the feeding behavior of Pea-Adapted and Non-Pea-Adapted biotypes of Acyrthosiphon Pisum differently. Insects 13, 268 (2022).

    Google Scholar 

  21. Nouhaud, P. et al. Identifying genomic hotspots of differentiation and candidate genes involved in the adaptive divergence of pea aphid host races. Mol. Ecol. 27, 3287–3300 (2018).

    Google Scholar 

  22. Boulain, H. et al. Differential expression of candidate salivary effector genes in pea aphid biotypes with distinct host plant specificity. Front. Plant Sci. 10, 1301 (2019).

  23. Louis, J. & Shah, J. Arabidopsis thaliana-Myzus persicae interaction: Shaping the Understanding of plant defense against phloem-feeding aphids. Front. Plant Sci. 4, 213 (2013).

  24. Sanchez-Arcos, C., Reichelt, M., Gershenzon, J. & Kunert, G. Modulation of legume defense signaling pathways by native and non-native pea aphid clones. Front. Plant. Sci. 7, 1872 (2016).

  25. Gao, L. L. et al. Involvement of the octadecanoid pathway in Bluegreen aphid resistance in Medicago truncatula. Mol. Plant Microbe Interact. 20, 82–93 (2007).

    Google Scholar 

  26. Ellis, C., Karafyllidis, I. & Turner, J. G. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant Microbe Interact. 15, 1025–1030 (2007).

    Google Scholar 

  27. Coppola, M. et al. Plant response to feeding aphids promotes aphid dispersal. Entomol. Exp. Appl. 166, 386–394 (2018).

    Google Scholar 

  28. Cao, F. Y., Yoshioka, K. & Desveaux, D. The roles of ABA in plant-pathogen interactions. J. Plant. Res. 124, 489–499 (2011).

    Google Scholar 

  29. Mai, V. C. et al. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–222, 1–12 (2014).

    Google Scholar 

  30. Ollivier, R. et al. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. Theor. Appl. Genet. 135, 1511–1528 (2022).

    Google Scholar 

  31. Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 51, 1411–1422 (2019).

    Google Scholar 

  32. Yang, X. et al. Fortifying crop defenses: unraveling the molecular arsenal against aphids. Hortic. Adv. 2, 1–17 (2024).

    Google Scholar 

  33. Erickson, J., Weckwerth, P., Romeis, T. & Lee, J. What’s new in protein kinase/phosphatase signalling in the control of plant immunity? Essays Biochem. 66, 621–634 (2022).

    Google Scholar 

  34. Chakraborty, P., Biswas, A., Dey, S., Bhattacharjee, T. & Chakrabarty, S. Cytochrome P450 gene families: role in plant secondary metabolites production and plant defense. J. Xenobiot. 13, 402–423 (2023).

    Google Scholar 

  35. Naseem, M., Kaltdorf, M. & Dandekar, T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J. Exp. Bot. 66, 4885–4896 (2015).

    Google Scholar 

  36. Papadopoulou, G. V., Maedicke, A., Grosser, K. & van Dam, N. M. & Martínez-Medina, A. Defence signalling marker gene responses to hormonal elicitation differ between roots and shoots. AoB Plants 10, ply031. https://doi.org/10.1093/aobpla/ply031 (2018).

  37. Beyer, S. F. et al. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci. Rep. 11, 1–15 (2021).

    Google Scholar 

  38. Duhlian, L., Koramutla, M. K., Subramanian, S., Chamola, R. & Bhattacharya, R. Comparative transcriptomics revealed differential regulation of defense related genes in Brassica juncea leading to successful and unsuccessful infestation by aphid species. Sci. Rep. 10, 1–14 (2020).

    Google Scholar 

  39. Medina-Ortega, K. J. & Walker, G. P. Faba bean forisomes can function in defence against generalist aphids. Plant. Cell. Environ. 38, 1167–1177 (2015).

    Google Scholar 

  40. Walker, G. P. Sieve element occlusion: interactions with phloem sap-feeding insects. A review. J. Plant. Physiol. 269, 153582 (2022).

    Google Scholar 

  41. Furch, A. C. U., Hafke, J. B., Schulz, A. & Van Bel, A. J. E. Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia Faba. J. Exp. Bot. 58, 2827–2838 (2007).

    Google Scholar 

  42. Will, T., Tjallingii, W. F., Thönnessen, A. & Van Bel, A. J. E. Molecular sabotage of plant defense by aphid saliva. Proc. Natl. Acad. Sci. U S A. 104, 10536–10541 (2007).

    Google Scholar 

  43. Gutsche, A. et al. Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. Bull. Entomol. Res. 99, 163–173 (2009).

    Google Scholar 

  44. Nebenführ, A. & Dixit, R. Kinesins and myosins: molecular motors that coordinate cellular functions in plants. Annu. Rev. Plant. Biol. 69, 329–361 (2018).

    Google Scholar 

  45. Gu, Y., Zavaliev, R. & Dong, X. Membrane trafficking in plant immunity. Mol. Plant. 10, 1026–1034 (2017).

    Google Scholar 

  46. Li, P. & Day, B. Battlefield cytoskeleton: turning the tide on plant immunity. Mol. Plant Microbe Interact. 32, 25–34 (2019).

    Google Scholar 

  47. Wang, J. et al. The cytoskeleton in plant immunity: Dynamics, regulation, and function. Int. J. Mol. Sci. 23, 15553 (2022).

  48. Lim, G. H., Singhal, R., Kachroo, A. & Kachroo, P. Fatty acid- and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 55, 505–536 (2017).

    Google Scholar 

  49. Kachroo, A. & Kachroo, P. Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 47, 153–176 (2009).

    Google Scholar 

  50. Molina, A. et al. Plant cell wall-mediated disease resistance: current understanding and future perspectives. Mol. Plant. 17, 699–724 (2024).

    Google Scholar 

  51. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. & Greenberg, J. T. Priming in systemic plant immunity. Science 324, 89–91 (2009).

  52. Djami-Tchatchou, A. T., Ncube, E. N., Steenkamp, P. A. & Dubery, I. A. Similar, but different: structurally related Azelaic acid and hexanoic acid trigger differential metabolomic and transcriptomic responses in tobacco cells. BMC Plant. Biol. 17, 1–15 (2017).

    Google Scholar 

  53. Peccoud, J. et al. Evolutionary history of aphid-plant associations and their role in aphid diversification. C R Biol. 333, 474–487 (2010).

    Google Scholar 

  54. Pinheiro, J. & Bates, D. Linear and nonlinear mixed effects models [R package Nlme version 3.1–166]. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.NLME (2024).

    Google Scholar 

  55. Pinheiro, J. C. B. D. Mixed-Effects Models in S and S-PLUS (2000). https://doi.org/10.1007/B98882

  56. R: The R Project for Statistical Computing. https://www.r-project.org/

  57. Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. https://doi.org/10.1007/978-0-387-87458-6 (2009).

  58. Bretz, F., Hothorn, T. & Westfall, P. Multiple comparisons using R. 1–183. https://doi.org/10.1201/9781420010909 (2016).

  59. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    Google Scholar 

  60. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    Google Scholar 

  61. Patel, H. et al. nf-core/rnaseq: nf-core/rnaseq v3.14.0 - Hassium Honey Badger. https://doi.org/10.5281/ZENODO.10471647

  62. Andrews, S. & FastQC: A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  63. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Google Scholar 

  64. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  65. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Google Scholar 

  66. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021).

  67. Wucher, V. et al. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 45, 57–57 (2017).

    Google Scholar 

  68. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Google Scholar 

  69. Alves-Carvalho, S. et al. AskoR, A R package for easy RNASeq data analysis. Proc. West. Mark. Ed. Assoc. Conf. 1, 10646 (2021).

    Google Scholar 

  70. Alves Carvalho, S. et al. GitHub - askomics/askoR. https://github.com/askomics/askoR

  71. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, 1–9 (2010).

    Google Scholar 

  72. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  73. Alexa, A. & Rahnenführer, J. topGO Enrichment Analysis for Gene Ontology. R package version 2.46.0. (2021).

  74. Rau, A. & Maugis-Rabusseau, C. Transformation and model choice for RNA-seq co-expression analysis. Brief. Bioinform. 19, 425–436 (2018).

    Google Scholar 

  75. Godichon-Baggioni, A., Maugis-Rabusseau, C. & Rau, A. Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data. J. Appl. Stat. 46, 47–65 (2019).

    Google Scholar 

  76. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Google Scholar 

  77. Kanehisa, M. & Goto, S. K. E. G. G. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  78. Pecrix, Y. et al. Whole-genome landscape of Medicago truncatula symbiotic genes. Nat. Plants. 4, 1017–1025 (2018).

    Google Scholar 

  79. Kolde, R. pheatmap. Pretty Heatmaps. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.PHEATMAP (2010).

  80. Chen, H. & Boutros, P. VennDiagram Generate High-Resolution Venn and Euler plots. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.VENNDIAGRAM (2011).

  81. Wickham, H. ggplot2. https://doi.org/10.1007/978-3-319-24277-4 (2016).

  82. Haas, B. GitHub - TransDecoder/TransDecoder. https://github.com/TransDecoder/TransDecoder

  83. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 1–9 (2009).

    Google Scholar 

  84. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Google Scholar 

  85. Cantalapiedra, C. P., Hern̗andez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Google Scholar 

  86. Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, 309–314 (2019).

    Google Scholar 

  87. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Google Scholar 

  88. Brooks, M. E. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  89. Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. CRAN: Contributed Packages. https://doi.org/10.32614/CRAN.PACKAGE.EMMEANS (2017).

Download references

Acknowledgements

We would like to thank Angélique Lesné and Isabelle Glory for multiplying the pea seeds and providing the material for our experiments. We acknowledge the GenOuest bioinformatics core facility (https://www.genouest.org) for providing the computing infrastructure.

Funding

Different parts of the presented work were funded by Plant2Pro-2018-CharaP, Plant2Pro-2022-R2V2, ANR-P-Aphid (ANR-18-CE20-0021–01), ANR-Mecadapt (ANR-18-CE02-0012), ANR-GreenPeas (ANR-23-CE20-0040-01) and ANR-PeaMUST (ANR-11-BTBR-0002). RO was supported by INRAE-SPE, INRAE-BAP, Région Bretagne PhD grants, ANR-P-Aphid, Région Bretagne mobility grant and Jean-Walter Zellidja grant. The collaboration between MPI and INRAE labs was supported by PHC PROCOPE 2022 N° 46675NL and PROCOPE 2021–2023 ID 57561355.

Author information

Author notes
  1. Rémi Ollivier

    Present address: Center for Quantitative Genetics and Genomics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark

  2. Po-Yuan Shih

    Present address: Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK

Authors and Affiliations

  1. IGEPP, INRAE, Institut Agro, Univ Rennes 1, Le Rheu, 35653, France

    Rémi Ollivier, Stéphanie Robin, Marc Galland, Po-Yuan Shih, Stéphanie Morlière, Marie-Laure Pilet-Nayel, Jean-Christophe Simon & Akiko Sugio

  2. University of Rennes, INRIA, CNRS, IRISA, Rennes, 35000, France

    Stéphanie Robin

  3. Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany

    Maria K. Paulmann, Jonathan Gershenzon & Grit Kunert

Authors
  1. Rémi Ollivier
    View author publications

    Search author on:PubMed Google Scholar

  2. Stéphanie Robin
    View author publications

    Search author on:PubMed Google Scholar

  3. Marc Galland
    View author publications

    Search author on:PubMed Google Scholar

  4. Maria K. Paulmann
    View author publications

    Search author on:PubMed Google Scholar

  5. Po-Yuan Shih
    View author publications

    Search author on:PubMed Google Scholar

  6. Stéphanie Morlière
    View author publications

    Search author on:PubMed Google Scholar

  7. Jonathan Gershenzon
    View author publications

    Search author on:PubMed Google Scholar

  8. Grit Kunert
    View author publications

    Search author on:PubMed Google Scholar

  9. Marie-Laure Pilet-Nayel
    View author publications

    Search author on:PubMed Google Scholar

  10. Jean-Christophe Simon
    View author publications

    Search author on:PubMed Google Scholar

  11. Akiko Sugio
    View author publications

    Search author on:PubMed Google Scholar

Contributions

RO, MLPN, JCS, AS, MP, PYS, JG, GK contributed to the study conception and design. RO, SR, MG, MP, JG, GK, PYS, MLPN, JCS, AS contributed to the RNAseq data analysis. RO, MP, JG, GK, PYS, MLPN, MG, JCS, AS contributed to the phytohormone data analysis. Material preparation and data collection were performed by RO, MP, PYS, SM, JCS and AS. The manuscript was written by RO, MLPN, MG, JCS and AS.

Corresponding author

Correspondence to Akiko Sugio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollivier, R., Robin, S., Galland, M. et al. Pea transcriptional and phytohormonal responses to adapted and non-adapted aphid biotypes at early stages of infestation. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38098-2

Download citation

  • Received: 23 June 2025

  • Accepted: 29 January 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38098-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Pisum sativum L.
  • Acyrthosiphon pisum Harris
  • Plant-aphid interactions
  • Resistance
  • Transcriptomics
  • Phytohormones
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing