Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Role of hydraulic parameters in the concentration and spatial distribution of heavy metals in sediments in a two-stage reservoir
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Role of hydraulic parameters in the concentration and spatial distribution of heavy metals in sediments in a two-stage reservoir

  • Joanna Jaskuła1,
  • Tomasz Dysarz2,
  • Joanna Wicher-Dysarz2,
  • Mariusz Sojka1,
  • Tropikë Agaj3,
  • Marcos Sanz-Ramos4 &
  • …
  • Marcin Siepak5 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Environmental sciences
  • Hydrology

Abstract

The role of hydraulic parameters in sediment transport and heavy metals concentration still needs scientific research. In this study, GIS techniques, IBER (a 2D hydrodynamic modeling system) and statistical analysis were applied to assess heavy metals concentration, spatial distribution and sources. A total number of 30 surface sediment samples were collected from the Stare Miasto two-stage reservoir. Results showed that median values follow order Zn > Pb > Cu > Cr > Ni > Cd, which was characteristic for both parts of the reservoir. The overall calculated median concentrations of Zn, Pb, Cu, Cr, Ni, and Cd were 6.74, 1.66, 1.14, 0.99, 0.8, and 0.04 mg/kg. Analysis of heavy metals concentration shows that higher mean values were observed in the pre-dam part for all of the analyzed heavy metals. The highest risk was observed for Zn, Pb and Cd for all of the analyzed samples. Statistical analysis showed that heavy metals concentration is correlated with the fraction of sediments and distance from the inflow. Spearman’s rank correlation showed that hydraulic parameters affect heavy metals concentration. Critical diameter was negatively correlated with Cu while Froude number and velocity were negatively correlated with Cu and Zn concentrations. Also, it was observed that Cu concentrations in the main zone were positively correlated with specific discharge. Results showed that the two-stage construction of the reservoir has an impact on the limitation of sediments spatial distribution and helps to control pollution related to heavy metals.

Data availability

Data will be available upon request, please contact with first author of the paper.

References

  1. Biswas, R. R., Sharma, R. & Gyasi-Agyei, Y. Adaptation to climate change: A study on regional urban water management and planning practice. J. Clean. Prod. 355, 131643. https://doi.org/10.1016/j.jclepro.2022.131643 (2022).

    Google Scholar 

  2. Bytyqi, V. & Agaj, T. Spatio-temporal distribution of renewable freshwater resources and their availability in Kosovo an analysis from the Eastern region. J. Bulg. Geogr. Soc. 50, 35–52. https://doi.org/10.3897/jbgs.e115814 (2024).

    Google Scholar 

  3. Dąbrowska, J. et al. Between flood and drought: how cities are facing water surplus and scarcity. J. Environ. Manage. 345, 118557. https://doi.org/10.1016/j.jenvman.2023.118557 (2023).

    Google Scholar 

  4. Haro-Monteagudo, D., Palazón, L., Zoumides, C. & Beguería, S. Optimal implementation of climate change adaptation measures to ensure long-term sustainability on large irrigation systems. Water Resour. Manage. 37 (8), 2909–2924. https://doi.org/10.1007/s11269-022-03225-x (2023).

    Google Scholar 

  5. Pulley, S. & Collins, A. L. Using the colour of recent overbank sediment deposits in two large catchments to determine sediment sources for targeting mitigation of catchment-specific management issues. J. Environ. Manage. 336, 117657. https://doi.org/10.1016/j.jenvman.2023.117657 (2023).

    Google Scholar 

  6. Jaskuła, J., Sojka, M. & Wicher-Dysarz, J. Analysis of the vegetation process in a two-stage reservoir on the basis of satellite imagery–a case study: Radzyny reservoir on the Sama river. Rocznik Ochrona Środowiska. 20 (1), 203–220 (2018).

    Google Scholar 

  7. Haghnazar, H., Sabbagh, K., Johannesson, K. H., Pourakbar, M. & Aghayani, E. Phytoremediation capability of typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf. Mar. Pollut Bull. 188, 114699. https://doi.org/10.1016/j.marpolbul.2023.114699 (2023).

    Google Scholar 

  8. Chen, L., Zhang, X., Zhang, M., Zhu, Y. & Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod. 354, 131681. https://doi.org/10.1016/j.jclepro.2022.131681( (2022).

    Google Scholar 

  9. Looi, L. J., Aris, A. Z., Yusoff, F. M., Isa, N. M. & Haris, H. Application of enrichment factor, geoaccumulation index, and ecological risk index in assessing the elemental pollution status of surface sediments. Environ. Geochem. Health. 41, 27–42. https://doi.org/10.1007/s10653-018-0149-1 (2019).

    Google Scholar 

  10. Canlı, O., Çetintürk, K. & Güzel, B. A comprehensive assessment, source input determination and distribution of persistent organic pollutants (POPs) along with heavy metals (HMs) in reservoir lake sediments from Çanakkale province, Türkiye. Environ. Geochem. Health. 45, 3985–4006. https://doi.org/10.1007/s10653-023-01480-4 (2023).

    Google Scholar 

  11. Gunes, G. The change of metal pollution in the water and sediment of the Bartın river in rainy and dry seasons. Environ. Eng. Res. 27 (2), 200701. https://doi.org/10.4491/eer.2020.701 (2022).

    Google Scholar 

  12. Sojka, M., Jaskuła, J., Barabach, J., Ptak, M. & Zhu, S. Heavy metals in lake surface sediments in protected areas in poland: concentration, pollution, ecological risk, sources and Spatial distribution. Sci. Rep. 12 (1), 15006. https://doi.org/10.1038/s41598-022-19298-y (2022).

    Google Scholar 

  13. Dendievel, A. M. et al. Key factors influencing metal concentrations in sediments along Western European rivers: A long-term monitoring study (1945–2020). Sci. Total Environ. 805, 149778. https://doi.org/10.1016/j.scitotenv.2021.149778 (2022).

    Google Scholar 

  14. Baran, A. et al. Metal contamination in sediments of dam reservoirs: A multi-facetted generic risk assessment. Chemosphere 310, 136760. https://doi.org/10.1016/j.chemosphere.2022.136760 (2023).

    Google Scholar 

  15. Nazeer, N., KB, F. S., Sreejisha, U., Mohan, R., Gayathry, O. S., Sudha, A., … Kumar,R. Metal partitioning in sediments and risk assessment of a ramsar site-Cochin estuary,South West India. Reg.Stud. Mar. Sci. 75, 103557, DOI: https://doi.org/10.1016/j.rsma.2024.103557 (2024).

  16. Varol, M., Ustaoğlu, F. & Tokatlı, C. Metal Pollution, Eco-Health risks and source apportionment in coastal sediments of Samsun, Türkiye: A receiving zone for the Kızılırmak and Yeşilırmak rivers. Environ. Res. 282, 122113. https://doi.org/10.1016/j.envres.2025.122113 (2025).

    Google Scholar 

  17. Tokatlı, C., Varol, M. & Ustaoğlu, F. Ecological and health risk assessment and quantitative source apportionment of dissolved metals in ponds used for drinking and irrigation purposes. Environ. Sci. Pollut Res. 30, 52818–52829. https://doi.org/10.1007/s11356-023-26078-2 (2023).

    Google Scholar 

  18. Bern, C. R., Walton-Day, K. & Naftz, D. L. Improved enrichment factor calculations through principal component analysis: examples from soils near breccia pipe uranium mines, Arizona, USA. Environ. Pollut. 248, 90–100. https://doi.org/10.1016/j.envpol.2019.01.122 (2019).

    Google Scholar 

  19. Castro, M. F. et al. Impact of anthropogenic activities on an urban river through a comprehensive analysis of water and sediments. Environ. Sci. Pollut Res. 28, 37754–37767. https://doi.org/10.1007/s11356-021-13349-z (2021).

    Google Scholar 

  20. Abbas, G., Jomaa, S., Bronstert, A. & Rode, M. Downstream changes in riverbank sediment sources and the effect of catchment size. J. Hydrol. : Reg. Stud. 46, 101340. https://doi.org/10.1016/j.ejrh.2023.101340 (2023).

    Google Scholar 

  21. Botle, A., Salgaonkar, S., Tiwari, R. & Barabde, G. Unveiling heavy metal pollution dynamics in sediments of river Ulhas, Maharashtra, india: a comprehensive analysis of anthropogenic influence, pollution indices, and health risk assessment. Environ. Geochem. Health. 46 (10). https://doi.org/10.1007/s10653-024-02208-8 (2024). 419, DOI.

  22. Ustaoğlu, F., Yüksel, B., Tepe, Y., Aydın, H. & Topaldemir, H. Metal pollution assessment in the surface sediments of a river system in Türkiye: integrating toxicological risk assessment and source identification. Mar. Pollut Bull. 203, 116514. https://doi.org/10.1016/j.marpolbul.2024.116514 (2024).

    Google Scholar 

  23. Rzętała, M. A. et al. Non-Metals and metalloids in bottom sediments as a geoecological indicator of a water body’s suitability for recreational use. Int. J. Environ. Res. Public. Health. 20 (5), 4334. https://doi.org/10.3390/ijerph20054334 (2023).

    Google Scholar 

  24. Tomczyk, P., Wdowczyk, A., Wiatkowska, B. & Szymańska-Pulikowska, A. Assessment of heavy metal contamination of agricultural soils in Poland using contamination indicators. Ecol. Indic. 156, 111161. https://doi.org/10.1016/j.ecolind.2023.111161 (2023).

    Google Scholar 

  25. Anyanwu, I. N. et al. Pollution of the Niger delta with total petroleum hydrocarbons, heavy metals and nutrients in relation to seasonal dynamics. Sci. Rep. 13 (1), 14079. https://doi.org/10.1038/s41598-023-40995-9 (2023).

    Google Scholar 

  26. Geng, N., Bai, Y. & Pan, S. Research on heavy metal release with suspended sediment in Taihu lake under hydrodynamic condition. Environ. Sci. Pollut Res. 29 (19), 28588–28597. https://doi.org/10.1007/s11356-021-17666-1 (2022).

    Google Scholar 

  27. Dong, X. et al. Evolution of reservoir quality related to clay coating overgrowths in tight sandstone in the fluvial facies of the southeastern Sichuan basin. Mar. Pet. Geol. 165, 106864. https://doi.org/10.1016/j.marpetgeo.2024.106864 (2024).

    Google Scholar 

  28. Zulti, F., Prihatinningtyas, E., Susanti, E. & Syafutra, H. Scalable wastewater treatment: performance of zeolite and bentonite in a fixed-bed reactor for textile effluents. J Water Process. Eng. 71, 107349. https://doi.org/10.1038/s41598-023-40995-9 (2025).

    Google Scholar 

  29. Siepak, M. & Sojka, M. Application of multivariate statistical approach to identify trace elements sources in surface waters: A case study of Kowalskie and stare miasto reservoirs, Poland. Environ. Monit. Assess. 189, 1–15. https://doi.org/10.1007/s10661-017-6089-x (2017).

    Google Scholar 

  30. Jiang, W., Chu, H., Liu, Y., Chen, B., Feng, Y., Lyu, J., … Hou, W. Distribution of heavy metals in coastal sediments under the influence of multiple factors: A case study from the south coast of an industrialized harbor city (Tangshan, China). Sci. Total Environ.889, 164208, DOI: https://doi.org/10.1016/j.scitotenv.2023.164208 (2023).

  31. Müller, G. Index of geoaccumulation in sediments of the rhine river. Geol. J. 2, 108–118 (1969).

    Google Scholar 

  32. Bojakowska, I. & Sokołowska, G. Geochemiczne Klasy czystości osadów Wodnych. Przegląd Geol. 46, 49–54 (1998).

    Google Scholar 

  33. Nawrot, N. et al. Trace metal contamination of bottom sediments: a review of assessment measures and geochemical background determination methods. Minerals 11 (8), 872. https://doi.org/10.3390/min11080872 (2021).

    Google Scholar 

  34. Tomlinson, D. L., Wilson, J. G., Harris, C. R. & Jeffrey, D. W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 33 (1–4), 566–575. https://doi.org/10.1007/BF02414780 (1980).

    Google Scholar 

  35. Sedeño-Díaz, J. E., López-López, E., Mendoza-Martínez, E., Rodríguez-Romero, A. J. & Morales-García, S. S. Distribution coefficient and metal pollution index in water and sediments: proposal of a new index for ecological risk assessment of metals. Water 12 (1), 29. https://doi.org/10.3390/w12010029 (2019).

    Google Scholar 

  36. Tokatlı, C., Varol, M., Ustaoğlu, F. & Muhammad, S. Pollution characteristics, sources and health risks assessment of potentially hazardous elements in sediments of ten ponds in the Saros Bay region (Türkiye). Chemosphere 340, 139977. https://doi.org/10.1016/j.chemosphere.2023.139977 (2023).

    Google Scholar 

  37. Yüksel, B., Ustaoğlu, F., Tokatli, C. & Islam, M. S. Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, turkey: association between garbage disposal facility and metallic accumulation. Environ. Sci. Pollut Res. 29 (12), 17223–17240. https://doi.org/10.1007/s11356-021-17023-2 (2022).

    Google Scholar 

  38. Zhang, G. et al. Heavy metals in wetland soils along a wetland-forming chronosequence in the yellow river delta of china: Levels, sources and toxic risks. Ecol. Indic. 69, 331–339. https://doi.org/10.1016/j.ecolind.2016.04.042 (2016).

    Google Scholar 

  39. Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R. & Ingersoll, C. G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5, 253–278. https://doi.org/10.1007/BF00118995 (1996).

    Google Scholar 

  40. Li, D. et al. Ecological risk of heavy metals in lake sediments of china: A national-scale integrated analysis. J. Clean. Prod. 334, 130206. https://doi.org/10.1016/j.jclepro.2021.130206 (2022).

    Google Scholar 

  41. Williams, J. A. & Antoine, J. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Mar. Pollut Bull. 157, 111288. https://doi.org/10.1016/j.marpolbul.2020.111288 (2020).

    Google Scholar 

  42. Hakanson, L. An ecological risk index for aquatic pollution control: A sediment ecological approach. Water Res. 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8 (1980).

    Google Scholar 

  43. Bladé, E. et al. Iber: Herramienta de simulación numérica Del Flujo En ríos. Revista Int. De Métodos Numéricos Para Cálculo Y Diseño En Ingeniería. 30, 1–10. https://doi.org/10.1016/j.rimni.2012.07.004 (2014).

    Google Scholar 

  44. Sanz-Ramos, M., Bladé, E., Silva-Cancino, N., Salazar, F. & López-Gómez, D. Martínez-Gomariz, E. A probabilistic approach for off-stream reservoir failure flood hazard assessment. Water 15 (12), 2202. https://doi.org/10.3390/w15122202 (2023).

    Google Scholar 

  45. Dysarz, T., Sanz-Ramos, M., Wicher-Dysarz, J. & Jaskuła, J. Potential effects of internal dam-break in stare miasto reservoir in Poland. J. Hydrol. : Reg. Stud. 53, 101801. https://doi.org/10.1016/j.ejrh.2024.101801 (2024).

    Google Scholar 

  46. Wicher-Dysarz, J. Analysis of shear stress and stream power Spatial distributions for detection of operational problems in the stare miasto reservoir. Water 11 (4), 691. https://doi.org/10.3390/w11040691 (2019).

    Google Scholar 

  47. Panda, D. et al. Heavy metals in the sediments of the Chilika Lake, india: contamination, source and toxicity analysis. Water Air Soil. Pollut. 235 (6), 415. https://doi.org/10.1007/s11270-024-07226-x (2024).

    Google Scholar 

  48. Gunawardena, J., Ziyath, A. M., Egodawatta, P., Ayoko, G. A. & Goonetilleke, A. Sources and transport pathways of common heavy metals to urban road surfaces. Ecol. Eng. 77, 98–102. https://doi.org/10.1016/j.ecoleng.2015.01.023 (2015).

    Google Scholar 

  49. Nawrot, N., Wojciechowska, E., Rezania, S., Walkusz-Miotk, J. & Pazdro, K. The effects of urban vehicle traffic on heavy metal contamination in road sweeping waste and bottom sediments of retention tanks. Sci. Total Environ. 749, 141511. https://doi.org/10.1016/j.scitotenv.2020.141511 (2020).

    Google Scholar 

  50. Gao, S. et al. Heavy metals in road-deposited sediment and runoff in urban and intercity expressways. Transp. Saf. Environ. 4 (1). https://doi.org/10.1093/tse/tdab030 (2021). tdab030, DOI.

  51. Zhu, H. et al. The Spatial and vertical distribution of heavy metal contamination in sediments of the three Gorges reservoir determined by anti-seasonal flow regulation. Sci. Total Environ. 664, 79–88. https://doi.org/10.1016/j.scitotenv.2019.02.016 (2019).

    Google Scholar 

  52. Lv, H., Chen, J. & Chen, R. Hydraulic reconstruction of paleolandslide-dammed lake outburst flood using water–sediment mixture flow modeling: a case study of Xuelongnang, upstream Jinsha river. Water 16 (24), 3713. https://doi.org/10.3390/w16243713 (2024).

    Google Scholar 

  53. Mohajane, C. & Manjoro, M. Sediment-associated heavy metal contamination and potential ecological risk along an urban river in South Africa. Heliyon 8, e12499. https://doi.org/10.1016/j.heliyon.2022.e12499 (2022).

    Google Scholar 

  54. Çelebi, A., Şengörür, B. & Kløve, B. Seasonal and Spatial variations of metals in Melen watershed Groundwater, Turkey. CLEAN–Soil Air Water. 43 (5), 739–745. https://doi.org/10.1002/clen.201300774 (2015).

    Google Scholar 

  55. Tokatlı, C., Ustaoğlu, F., Yazman, M. M. & Yüksel, B. Where rivers Meet the sea: source fingerprinting and health risk mapping of potentially hazardous elements in sediments from the Çanakkale Strait basin (Türkiye). Mar. Pollut Bull. 222, 118626. https://doi.org/10.1016/j.marpolbul.2025.118626 (2026).

    Google Scholar 

  56. Cabral, J. B. P. et al. Sediments of hydropower plant water reservoirs contaminated with potentially toxic elements as indicators of environmental risk for river basins. Water 16 (19), 2733. https://doi.org/10.3390/w16192733 (2024).

    Google Scholar 

  57. Yang, Z., Zou, Z., Tan, S. & Yan, H. Assessment of historical heavy metal (loid) s contamination records reveals dominant control of grain size effect on the sedimentary profiles from the North yellow sea. Environ. Pollut. 385, 127078. https://doi.org/10.1016/j.envpol.2025.127078 (2025).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Poznań, 60–649, Poland

    Joanna Jaskuła & Mariusz Sojka

  2. Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Poznań, 60–649, Poland

    Tomasz Dysarz & Joanna Wicher-Dysarz

  3. Department of Construction and Geoengineering, Poznań University of Life Sciences, Poznań, 60–649, Poland

    Tropikë Agaj

  4. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Universitat Politècnica de Catalunya, Barcelona, 08034, Spain

    Marcos Sanz-Ramos

  5. Institute of Geology, Adam Mickiewicz University, Poznań, 61–680, Poland

    Marcin Siepak

Authors
  1. Joanna Jaskuła
    View author publications

    Search author on:PubMed Google Scholar

  2. Tomasz Dysarz
    View author publications

    Search author on:PubMed Google Scholar

  3. Joanna Wicher-Dysarz
    View author publications

    Search author on:PubMed Google Scholar

  4. Mariusz Sojka
    View author publications

    Search author on:PubMed Google Scholar

  5. Tropikë Agaj
    View author publications

    Search author on:PubMed Google Scholar

  6. Marcos Sanz-Ramos
    View author publications

    Search author on:PubMed Google Scholar

  7. Marcin Siepak
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization J.J; Methodology J.J., T.D. and M.S.; Software J.J, T.D. and M.S.R; Validation J.J, T.D. and M.S.R; Formal analysis J.J and M.S.; Resources J.J, J.W.D., M.S. and M.Si.; Data Curation J.J, T.D., J.W.D. and M.S.; Writing - Original Draft J.J, T.D., J.W.D., M.S. and T.A.; Writing - Review & Editing J.J and T.A.; Visualization J.J; Supervision J.J; Project administration J.J. All authors reviewed the manuscript.

Corresponding author

Correspondence to Joanna Jaskuła.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaskuła, J., Dysarz, T., Wicher-Dysarz, J. et al. Role of hydraulic parameters in the concentration and spatial distribution of heavy metals in sediments in a two-stage reservoir. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38103-8

Download citation

  • Received: 29 October 2025

  • Accepted: 29 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38103-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heavy metals
  • Sediments
  • Two-stage reservoir
  • IBER
  • GIS
Download PDF

Associated content

Collection

Water pollution and advanced treatment processes

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene