Abstract
The role of hydraulic parameters in sediment transport and heavy metals concentration still needs scientific research. In this study, GIS techniques, IBER (a 2D hydrodynamic modeling system) and statistical analysis were applied to assess heavy metals concentration, spatial distribution and sources. A total number of 30 surface sediment samples were collected from the Stare Miasto two-stage reservoir. Results showed that median values follow order Zn > Pb > Cu > Cr > Ni > Cd, which was characteristic for both parts of the reservoir. The overall calculated median concentrations of Zn, Pb, Cu, Cr, Ni, and Cd were 6.74, 1.66, 1.14, 0.99, 0.8, and 0.04 mg/kg. Analysis of heavy metals concentration shows that higher mean values were observed in the pre-dam part for all of the analyzed heavy metals. The highest risk was observed for Zn, Pb and Cd for all of the analyzed samples. Statistical analysis showed that heavy metals concentration is correlated with the fraction of sediments and distance from the inflow. Spearman’s rank correlation showed that hydraulic parameters affect heavy metals concentration. Critical diameter was negatively correlated with Cu while Froude number and velocity were negatively correlated with Cu and Zn concentrations. Also, it was observed that Cu concentrations in the main zone were positively correlated with specific discharge. Results showed that the two-stage construction of the reservoir has an impact on the limitation of sediments spatial distribution and helps to control pollution related to heavy metals.
Data availability
Data will be available upon request, please contact with first author of the paper.
References
Biswas, R. R., Sharma, R. & Gyasi-Agyei, Y. Adaptation to climate change: A study on regional urban water management and planning practice. J. Clean. Prod. 355, 131643. https://doi.org/10.1016/j.jclepro.2022.131643 (2022).
Bytyqi, V. & Agaj, T. Spatio-temporal distribution of renewable freshwater resources and their availability in Kosovo an analysis from the Eastern region. J. Bulg. Geogr. Soc. 50, 35–52. https://doi.org/10.3897/jbgs.e115814 (2024).
Dąbrowska, J. et al. Between flood and drought: how cities are facing water surplus and scarcity. J. Environ. Manage. 345, 118557. https://doi.org/10.1016/j.jenvman.2023.118557 (2023).
Haro-Monteagudo, D., Palazón, L., Zoumides, C. & Beguería, S. Optimal implementation of climate change adaptation measures to ensure long-term sustainability on large irrigation systems. Water Resour. Manage. 37 (8), 2909–2924. https://doi.org/10.1007/s11269-022-03225-x (2023).
Pulley, S. & Collins, A. L. Using the colour of recent overbank sediment deposits in two large catchments to determine sediment sources for targeting mitigation of catchment-specific management issues. J. Environ. Manage. 336, 117657. https://doi.org/10.1016/j.jenvman.2023.117657 (2023).
Jaskuła, J., Sojka, M. & Wicher-Dysarz, J. Analysis of the vegetation process in a two-stage reservoir on the basis of satellite imagery–a case study: Radzyny reservoir on the Sama river. Rocznik Ochrona Środowiska. 20 (1), 203–220 (2018).
Haghnazar, H., Sabbagh, K., Johannesson, K. H., Pourakbar, M. & Aghayani, E. Phytoremediation capability of typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf. Mar. Pollut Bull. 188, 114699. https://doi.org/10.1016/j.marpolbul.2023.114699 (2023).
Chen, L., Zhang, X., Zhang, M., Zhu, Y. & Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod. 354, 131681. https://doi.org/10.1016/j.jclepro.2022.131681( (2022).
Looi, L. J., Aris, A. Z., Yusoff, F. M., Isa, N. M. & Haris, H. Application of enrichment factor, geoaccumulation index, and ecological risk index in assessing the elemental pollution status of surface sediments. Environ. Geochem. Health. 41, 27–42. https://doi.org/10.1007/s10653-018-0149-1 (2019).
Canlı, O., Çetintürk, K. & Güzel, B. A comprehensive assessment, source input determination and distribution of persistent organic pollutants (POPs) along with heavy metals (HMs) in reservoir lake sediments from Çanakkale province, Türkiye. Environ. Geochem. Health. 45, 3985–4006. https://doi.org/10.1007/s10653-023-01480-4 (2023).
Gunes, G. The change of metal pollution in the water and sediment of the Bartın river in rainy and dry seasons. Environ. Eng. Res. 27 (2), 200701. https://doi.org/10.4491/eer.2020.701 (2022).
Sojka, M., Jaskuła, J., Barabach, J., Ptak, M. & Zhu, S. Heavy metals in lake surface sediments in protected areas in poland: concentration, pollution, ecological risk, sources and Spatial distribution. Sci. Rep. 12 (1), 15006. https://doi.org/10.1038/s41598-022-19298-y (2022).
Dendievel, A. M. et al. Key factors influencing metal concentrations in sediments along Western European rivers: A long-term monitoring study (1945–2020). Sci. Total Environ. 805, 149778. https://doi.org/10.1016/j.scitotenv.2021.149778 (2022).
Baran, A. et al. Metal contamination in sediments of dam reservoirs: A multi-facetted generic risk assessment. Chemosphere 310, 136760. https://doi.org/10.1016/j.chemosphere.2022.136760 (2023).
Nazeer, N., KB, F. S., Sreejisha, U., Mohan, R., Gayathry, O. S., Sudha, A., … Kumar,R. Metal partitioning in sediments and risk assessment of a ramsar site-Cochin estuary,South West India. Reg.Stud. Mar. Sci. 75, 103557, DOI: https://doi.org/10.1016/j.rsma.2024.103557 (2024).
Varol, M., Ustaoğlu, F. & Tokatlı, C. Metal Pollution, Eco-Health risks and source apportionment in coastal sediments of Samsun, Türkiye: A receiving zone for the Kızılırmak and Yeşilırmak rivers. Environ. Res. 282, 122113. https://doi.org/10.1016/j.envres.2025.122113 (2025).
Tokatlı, C., Varol, M. & Ustaoğlu, F. Ecological and health risk assessment and quantitative source apportionment of dissolved metals in ponds used for drinking and irrigation purposes. Environ. Sci. Pollut Res. 30, 52818–52829. https://doi.org/10.1007/s11356-023-26078-2 (2023).
Bern, C. R., Walton-Day, K. & Naftz, D. L. Improved enrichment factor calculations through principal component analysis: examples from soils near breccia pipe uranium mines, Arizona, USA. Environ. Pollut. 248, 90–100. https://doi.org/10.1016/j.envpol.2019.01.122 (2019).
Castro, M. F. et al. Impact of anthropogenic activities on an urban river through a comprehensive analysis of water and sediments. Environ. Sci. Pollut Res. 28, 37754–37767. https://doi.org/10.1007/s11356-021-13349-z (2021).
Abbas, G., Jomaa, S., Bronstert, A. & Rode, M. Downstream changes in riverbank sediment sources and the effect of catchment size. J. Hydrol. : Reg. Stud. 46, 101340. https://doi.org/10.1016/j.ejrh.2023.101340 (2023).
Botle, A., Salgaonkar, S., Tiwari, R. & Barabde, G. Unveiling heavy metal pollution dynamics in sediments of river Ulhas, Maharashtra, india: a comprehensive analysis of anthropogenic influence, pollution indices, and health risk assessment. Environ. Geochem. Health. 46 (10). https://doi.org/10.1007/s10653-024-02208-8 (2024). 419, DOI.
Ustaoğlu, F., Yüksel, B., Tepe, Y., Aydın, H. & Topaldemir, H. Metal pollution assessment in the surface sediments of a river system in Türkiye: integrating toxicological risk assessment and source identification. Mar. Pollut Bull. 203, 116514. https://doi.org/10.1016/j.marpolbul.2024.116514 (2024).
Rzętała, M. A. et al. Non-Metals and metalloids in bottom sediments as a geoecological indicator of a water body’s suitability for recreational use. Int. J. Environ. Res. Public. Health. 20 (5), 4334. https://doi.org/10.3390/ijerph20054334 (2023).
Tomczyk, P., Wdowczyk, A., Wiatkowska, B. & Szymańska-Pulikowska, A. Assessment of heavy metal contamination of agricultural soils in Poland using contamination indicators. Ecol. Indic. 156, 111161. https://doi.org/10.1016/j.ecolind.2023.111161 (2023).
Anyanwu, I. N. et al. Pollution of the Niger delta with total petroleum hydrocarbons, heavy metals and nutrients in relation to seasonal dynamics. Sci. Rep. 13 (1), 14079. https://doi.org/10.1038/s41598-023-40995-9 (2023).
Geng, N., Bai, Y. & Pan, S. Research on heavy metal release with suspended sediment in Taihu lake under hydrodynamic condition. Environ. Sci. Pollut Res. 29 (19), 28588–28597. https://doi.org/10.1007/s11356-021-17666-1 (2022).
Dong, X. et al. Evolution of reservoir quality related to clay coating overgrowths in tight sandstone in the fluvial facies of the southeastern Sichuan basin. Mar. Pet. Geol. 165, 106864. https://doi.org/10.1016/j.marpetgeo.2024.106864 (2024).
Zulti, F., Prihatinningtyas, E., Susanti, E. & Syafutra, H. Scalable wastewater treatment: performance of zeolite and bentonite in a fixed-bed reactor for textile effluents. J Water Process. Eng. 71, 107349. https://doi.org/10.1038/s41598-023-40995-9 (2025).
Siepak, M. & Sojka, M. Application of multivariate statistical approach to identify trace elements sources in surface waters: A case study of Kowalskie and stare miasto reservoirs, Poland. Environ. Monit. Assess. 189, 1–15. https://doi.org/10.1007/s10661-017-6089-x (2017).
Jiang, W., Chu, H., Liu, Y., Chen, B., Feng, Y., Lyu, J., … Hou, W. Distribution of heavy metals in coastal sediments under the influence of multiple factors: A case study from the south coast of an industrialized harbor city (Tangshan, China). Sci. Total Environ.889, 164208, DOI: https://doi.org/10.1016/j.scitotenv.2023.164208 (2023).
Müller, G. Index of geoaccumulation in sediments of the rhine river. Geol. J. 2, 108–118 (1969).
Bojakowska, I. & Sokołowska, G. Geochemiczne Klasy czystości osadów Wodnych. Przegląd Geol. 46, 49–54 (1998).
Nawrot, N. et al. Trace metal contamination of bottom sediments: a review of assessment measures and geochemical background determination methods. Minerals 11 (8), 872. https://doi.org/10.3390/min11080872 (2021).
Tomlinson, D. L., Wilson, J. G., Harris, C. R. & Jeffrey, D. W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 33 (1–4), 566–575. https://doi.org/10.1007/BF02414780 (1980).
Sedeño-Díaz, J. E., López-López, E., Mendoza-Martínez, E., Rodríguez-Romero, A. J. & Morales-García, S. S. Distribution coefficient and metal pollution index in water and sediments: proposal of a new index for ecological risk assessment of metals. Water 12 (1), 29. https://doi.org/10.3390/w12010029 (2019).
Tokatlı, C., Varol, M., Ustaoğlu, F. & Muhammad, S. Pollution characteristics, sources and health risks assessment of potentially hazardous elements in sediments of ten ponds in the Saros Bay region (Türkiye). Chemosphere 340, 139977. https://doi.org/10.1016/j.chemosphere.2023.139977 (2023).
Yüksel, B., Ustaoğlu, F., Tokatli, C. & Islam, M. S. Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, turkey: association between garbage disposal facility and metallic accumulation. Environ. Sci. Pollut Res. 29 (12), 17223–17240. https://doi.org/10.1007/s11356-021-17023-2 (2022).
Zhang, G. et al. Heavy metals in wetland soils along a wetland-forming chronosequence in the yellow river delta of china: Levels, sources and toxic risks. Ecol. Indic. 69, 331–339. https://doi.org/10.1016/j.ecolind.2016.04.042 (2016).
Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R. & Ingersoll, C. G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5, 253–278. https://doi.org/10.1007/BF00118995 (1996).
Li, D. et al. Ecological risk of heavy metals in lake sediments of china: A national-scale integrated analysis. J. Clean. Prod. 334, 130206. https://doi.org/10.1016/j.jclepro.2021.130206 (2022).
Williams, J. A. & Antoine, J. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Mar. Pollut Bull. 157, 111288. https://doi.org/10.1016/j.marpolbul.2020.111288 (2020).
Hakanson, L. An ecological risk index for aquatic pollution control: A sediment ecological approach. Water Res. 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8 (1980).
Bladé, E. et al. Iber: Herramienta de simulación numérica Del Flujo En ríos. Revista Int. De Métodos Numéricos Para Cálculo Y Diseño En Ingeniería. 30, 1–10. https://doi.org/10.1016/j.rimni.2012.07.004 (2014).
Sanz-Ramos, M., Bladé, E., Silva-Cancino, N., Salazar, F. & López-Gómez, D. Martínez-Gomariz, E. A probabilistic approach for off-stream reservoir failure flood hazard assessment. Water 15 (12), 2202. https://doi.org/10.3390/w15122202 (2023).
Dysarz, T., Sanz-Ramos, M., Wicher-Dysarz, J. & Jaskuła, J. Potential effects of internal dam-break in stare miasto reservoir in Poland. J. Hydrol. : Reg. Stud. 53, 101801. https://doi.org/10.1016/j.ejrh.2024.101801 (2024).
Wicher-Dysarz, J. Analysis of shear stress and stream power Spatial distributions for detection of operational problems in the stare miasto reservoir. Water 11 (4), 691. https://doi.org/10.3390/w11040691 (2019).
Panda, D. et al. Heavy metals in the sediments of the Chilika Lake, india: contamination, source and toxicity analysis. Water Air Soil. Pollut. 235 (6), 415. https://doi.org/10.1007/s11270-024-07226-x (2024).
Gunawardena, J., Ziyath, A. M., Egodawatta, P., Ayoko, G. A. & Goonetilleke, A. Sources and transport pathways of common heavy metals to urban road surfaces. Ecol. Eng. 77, 98–102. https://doi.org/10.1016/j.ecoleng.2015.01.023 (2015).
Nawrot, N., Wojciechowska, E., Rezania, S., Walkusz-Miotk, J. & Pazdro, K. The effects of urban vehicle traffic on heavy metal contamination in road sweeping waste and bottom sediments of retention tanks. Sci. Total Environ. 749, 141511. https://doi.org/10.1016/j.scitotenv.2020.141511 (2020).
Gao, S. et al. Heavy metals in road-deposited sediment and runoff in urban and intercity expressways. Transp. Saf. Environ. 4 (1). https://doi.org/10.1093/tse/tdab030 (2021). tdab030, DOI.
Zhu, H. et al. The Spatial and vertical distribution of heavy metal contamination in sediments of the three Gorges reservoir determined by anti-seasonal flow regulation. Sci. Total Environ. 664, 79–88. https://doi.org/10.1016/j.scitotenv.2019.02.016 (2019).
Lv, H., Chen, J. & Chen, R. Hydraulic reconstruction of paleolandslide-dammed lake outburst flood using water–sediment mixture flow modeling: a case study of Xuelongnang, upstream Jinsha river. Water 16 (24), 3713. https://doi.org/10.3390/w16243713 (2024).
Mohajane, C. & Manjoro, M. Sediment-associated heavy metal contamination and potential ecological risk along an urban river in South Africa. Heliyon 8, e12499. https://doi.org/10.1016/j.heliyon.2022.e12499 (2022).
Çelebi, A., Şengörür, B. & Kløve, B. Seasonal and Spatial variations of metals in Melen watershed Groundwater, Turkey. CLEAN–Soil Air Water. 43 (5), 739–745. https://doi.org/10.1002/clen.201300774 (2015).
Tokatlı, C., Ustaoğlu, F., Yazman, M. M. & Yüksel, B. Where rivers Meet the sea: source fingerprinting and health risk mapping of potentially hazardous elements in sediments from the Çanakkale Strait basin (Türkiye). Mar. Pollut Bull. 222, 118626. https://doi.org/10.1016/j.marpolbul.2025.118626 (2026).
Cabral, J. B. P. et al. Sediments of hydropower plant water reservoirs contaminated with potentially toxic elements as indicators of environmental risk for river basins. Water 16 (19), 2733. https://doi.org/10.3390/w16192733 (2024).
Yang, Z., Zou, Z., Tan, S. & Yan, H. Assessment of historical heavy metal (loid) s contamination records reveals dominant control of grain size effect on the sedimentary profiles from the North yellow sea. Environ. Pollut. 385, 127078. https://doi.org/10.1016/j.envpol.2025.127078 (2025).
Author information
Authors and Affiliations
Contributions
Conceptualization J.J; Methodology J.J., T.D. and M.S.; Software J.J, T.D. and M.S.R; Validation J.J, T.D. and M.S.R; Formal analysis J.J and M.S.; Resources J.J, J.W.D., M.S. and M.Si.; Data Curation J.J, T.D., J.W.D. and M.S.; Writing - Original Draft J.J, T.D., J.W.D., M.S. and T.A.; Writing - Review & Editing J.J and T.A.; Visualization J.J; Supervision J.J; Project administration J.J. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Jaskuła, J., Dysarz, T., Wicher-Dysarz, J. et al. Role of hydraulic parameters in the concentration and spatial distribution of heavy metals in sediments in a two-stage reservoir. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38103-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38103-8