Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
CDK2 inhibition promotes neuronal differentiation in neuroblastoma
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 February 2026

CDK2 inhibition promotes neuronal differentiation in neuroblastoma

  • Mohammad Alzrigat1 na1,
  • Loay Mahmoud2 na1,
  • Ada Nursel Topçu1 nAff4,
  • Marta Valenti1 nAff5,
  • Lu Zhang3,
  • Puck Veen1,
  • Fabian John1,
  • Wesam Bazzar3,
  • Kaisa Lehti2 &
  • …
  • Lars-Gunnar Larsson1,3 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer
  • Oncology

Abstract

Neuroblastoma (NB) is a childhood tumor arising from neural crest-derived progenitor cells. Cyclin dependent kinase 2 (CDK2) has been suggested to be a promising therapeutic target in NB especially MYCN-amplified tumors. How CDK2 contributes to the development of NB is not fully understood. Here, we demonstrate that high CDK2 expression in NB correlates with advanced and high-risk disease, MYCN-amplification, poor prognosis, and undifferentiated tumors. We uncovered that CDK2 genetic or pharmacological inhibition induces neuronal differentiation in human NB cell lines, which effect is in general more prominent in the MYCN-amplified subtype. Further, we establish CDK2 as a MYCN target gene that modulate the MYC-pathway in MYCN-amplified NB. Notably, pharmacological inhibition of CDK2 in combination with MYCN inhibition or all-trans-retinoic acid (ATRA) differentiation therapy enhances neuronal differentiation in vitro. These results reveal an important function of CDK2 in NB and highlight CDK2 inhibition alone or in combination with MYC inhibitors and retinoids as a potential strategy for differentiation therapy in NB.

Data availability

The NB primary tumor gene expression datasets: the SEQC-498, Westermann-579, Kocak-649, and TARGET-161 analyzed during the current study are available in the R2: Genomics Analysis and Visualization Platform repository ([http://r2.amc.nl](http:/r2.amc.nl)). The gene expression dataset following CDK2-KD in the MYCN-amplified cell line IMR32 is available at gene expression omnibus under the accession number GSE16480. The single cell RNA-seq data is available at NB atlas (https://single-cell.be/nbatlas/). No datasets were generated in this study.

References

  1. Maris, J. M., Hogarty, M. D., Bagatell, R. & Cohn, S. L. Neuroblastoma Lancet 369, 2106–2120, doi:https://doi.org/10.1016/s0140-6736(07)60983-0 (2007).

    Google Scholar 

  2. Matthay, K. K. et al. Neuroblastoma. Nat. Rev. Dis. Primers. 2, 16078. https://doi.org/10.1038/nrdp.2016.78 (2016).

    Google Scholar 

  3. Chung, C. et al. Neuroblastoma. Pediatr. Blood Cancer. 68 Suppl 2, e28473. https://doi.org/10.1002/pbc.28473 (2021).

    Google Scholar 

  4. Cohn, S. L. et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J. Clin. Oncol. 27, 289–297. https://doi.org/10.1200/jco.2008.16.6785 (2009).

    Google Scholar 

  5. Pinto, N. R. et al. Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 33, 3008–3017. https://doi.org/10.1200/jco.2014.59.4648 (2015).

    Google Scholar 

  6. Newman, E. A. & Nuchtern, J. G. Recent biologic and genetic advances in neuroblastoma: implications for diagnostic, risk stratification, and treatment strategies. Semin Pediatr. Surg. 25, 257–264. https://doi.org/10.1053/j.sempedsurg.2016.09.007 (2016).

    Google Scholar 

  7. Van Roy, N. et al. The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy. Genome Med. 1, 74. https://doi.org/10.1186/gm74 (2009).

    Google Scholar 

  8. Maris, J. M. Recent advances in neuroblastoma. N Engl. J. Med. 362, 2202–2211. https://doi.org/10.1056/NEJMra0804577 (2010).

    Google Scholar 

  9. Newman, E. A. et al. Update on neuroblastoma. J. Pediatr. Surg. 54, 383–389. https://doi.org/10.1016/j.jpedsurg.2018.09.004 (2019).

    Google Scholar 

  10. Zage, P. E. Novel therapies for relapsed and refractory neuroblastoma. Child. (Basel). 5 https://doi.org/10.3390/children5110148 (2018).

  11. Wienke, J. et al. The immune landscape of neuroblastoma: challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur. J. Cancer. 144, 123–150. https://doi.org/10.1016/j.ejca.2020.11.014 (2020).

    Google Scholar 

  12. Yu, A. L. et al. Long-Term Follow-up of a phase III study of ch14.18 (Dinutuximab) + Cytokine immunotherapy in children with High-Risk neuroblastoma: COG study ANBL0032. Clin. Cancer Res. 27, 2179–2189. https://doi.org/10.1158/1078-0432.Ccr-20-3909 (2021).

    Google Scholar 

  13. Makimoto, A. et al. Retinoid therapy for neuroblastoma: historical Overview, regulatory Challenges, and prospects. Cancers (Basel). 16 https://doi.org/10.3390/cancers16030544 (2024).

  14. Reynolds, C. P., Matthay, K. K., Villablanca, J. G. & Maurer, B. J. Retinoid therapy of high-risk neuroblastoma. Cancer Lett. 197, 185–192. https://doi.org/10.1016/s0304-3835(03)00108-3 (2003).

    Google Scholar 

  15. Valentijn, L. J. et al. Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc. Natl. Acad. Sci. U S A. 109, 19190–19195. https://doi.org/10.1073/pnas.1208215109 (2012).

    Google Scholar 

  16. Zimmerman, M. W. et al. MYC drives a subset of High-Risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 8, 320–335. https://doi.org/10.1158/2159-8290.Cd-17-0993 (2018).

    Google Scholar 

  17. Yang, X. H., Tang, F., Shin, J. & Cunningham, J. M. A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature). Sci. Rep. 7, 41. https://doi.org/10.1038/s41598-017-00122-x (2017).

    Google Scholar 

  18. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35. https://doi.org/10.1016/j.cell.2012.03.003 (2012).

    Google Scholar 

  19. Cowling, V. H. & Cole, M. D. Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol. 16, 242–252. https://doi.org/10.1016/j.semcancer.2006.08.001 (2006).

    Google Scholar 

  20. Kress, T. R., Sabò, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer. 15, 593–607. https://doi.org/10.1038/nrc3984 (2015).

    Google Scholar 

  21. Whitfield, J. R., Beaulieu, M. E. & Soucek, L. Strategies to inhibit Myc and their clinical applicability. Front. Cell. Dev. Biol. 5 https://doi.org/10.3389/fcell.2017.00010 (2017).

  22. Duffy, M. J., O’Grady, S., Tang, M. & Crown, J. MYC as a target for cancer treatment. Cancer Treat. Rev. 94, 102154. https://doi.org/10.1016/j.ctrv.2021.102154 (2021).

    Google Scholar 

  23. Madden, S. K., de Araujo, A. D., Gerhardt, M., Fairlie, D. P. & Mason, J. M. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer. 20, 3. https://doi.org/10.1186/s12943-020-01291-6 (2021).

    Google Scholar 

  24. Wang, C. et al. Alternative approaches to target Myc for cancer treatment. Signal. Transduct. Target. Ther. 6, 117. https://doi.org/10.1038/s41392-021-00500-y (2021).

    Google Scholar 

  25. Llombart, V. & Mansour, M. R. Therapeutic targeting of undruggable MYC. EBioMedicine 75, 103756, (2022). https://doi.org/10.1016/j.ebiom.2021.103756

  26. Whitfield, J. R. & Soucek, L. MYC in cancer: from undruggable target to clinical trials. Nat. Rev. Drug Discov. 24, 445–457. https://doi.org/10.1038/s41573-025-01143-2 (2025).

    Google Scholar 

  27. Han, H. et al. Small-Molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell. 36, 483–497e415. https://doi.org/10.1016/j.ccell.2019.10.001 (2019).

    Google Scholar 

  28. Castell, A. et al. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci. Rep. 8, 10064. https://doi.org/10.1038/s41598-018-28107-4 (2018).

    Google Scholar 

  29. Castell, A. et al. MYCMI-7: A small MYC-Binding compound that inhibits MYC: MAX interaction and tumor growth in a MYC-Dependent manner. Cancer Res. Commun. 2, 182–201. https://doi.org/10.1158/2767-9764.Crc-21-0019 (2022).

    Google Scholar 

  30. Soucek, L. et al. Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res. 62, 3507–3510 (2002).

    Google Scholar 

  31. Beaulieu, M. E. et al. Intrinsic cell-penetrating activity propels omomyc from proof of concept to viable anti-MYC therapy. Sci. Transl Med. 11 https://doi.org/10.1126/scitranslmed.aar5012 (2019).

  32. Garralda, E. et al. MYC targeting by OMO-103 in solid tumors: a phase 1 trial. Nat. Med. 30, 762–771. https://doi.org/10.1038/s41591-024-02805-1 (2024).

    Google Scholar 

  33. Chayka, O., D’Acunto, C. W., Middleton, O., Arab, M. & Sala, A. Identification and Pharmacological inactivation of the MYCN gene network as a therapeutic strategy for neuroblastic tumor cells. J. Biol. Chem. 290, 2198–2212. https://doi.org/10.1074/jbc.M114.624056 (2015).

    Google Scholar 

  34. Durbin, A. D. et al. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nat. Genet. 50, 1240–1246. https://doi.org/10.1038/s41588-018-0191-z (2018).

    Google Scholar 

  35. Wang, J. et al. FDA-approved drug screen identifies proteasome as a synthetic lethal target in MYC-driven neuroblastoma. Oncogene 38, 6737–6751. https://doi.org/10.1038/s41388-019-0912-5 (2019).

    Google Scholar 

  36. Chen, L. et al. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J. Clin. Invest. 128, 446–462. https://doi.org/10.1172/JCI90793 (2018).

    Google Scholar 

  37. Lee, H. M. et al. A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics. Nat. Commun. 14, 7332. https://doi.org/10.1038/s41467-023-43134-0 (2023).

    Google Scholar 

  38. Sottile, F., Gnemmi, I., Cantilena, S., D’Acunto, W. C. & Sala, A. A chemical screen identifies the chemotherapeutic drug Topotecan as a specific inhibitor of the B-MYB/MYCN axis in neuroblastoma. Oncotarget 3, 535–545. https://doi.org/10.18632/oncotarget.498 (2012).

    Google Scholar 

  39. Ham, J. et al. Exploitation of the Apoptosis-Primed state of MYCN-Amplified neuroblastoma to develop a potent and specific targeted therapy combination. Cancer Cell. 29, 159–172. https://doi.org/10.1016/j.ccell.2016.01.002 (2016).

    Google Scholar 

  40. Cheung, B. B. et al. A novel combination therapy targeting ubiquitin-specific protease 5 in MYCN-driven neuroblastoma. Oncogene 40, 2367–2381. https://doi.org/10.1038/s41388-021-01712-w (2021).

    Google Scholar 

  41. Molenaar, J. J. et al. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc. Natl. Acad. Sci. U S A. 106, 12968–12973. https://doi.org/10.1073/pnas.0901418106 (2009).

    Google Scholar 

  42. Dolman, M. E. et al. Cyclin-Dependent kinase inhibitor AT7519 as a potential drug for MYCN-Dependent neuroblastoma. Clin. Cancer Res. 21, 5100–5109. https://doi.org/10.1158/1078-0432.Ccr-15-0313 (2015).

    Google Scholar 

  43. Poon, E. et al. Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. J. Clin. Invest. 130, 5875–5892. https://doi.org/10.1172/jci134132 (2020).

    Google Scholar 

  44. Geoerger, B. et al. A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, Neuroblastoma, and other solid tumors. Clin. Cancer Res. 23, 2433–2441. https://doi.org/10.1158/1078-0432.Ccr-16-2898 (2017).

    Google Scholar 

  45. Moreno, L. et al. Accelerating drug development for neuroblastoma: summary of the second neuroblastoma drug development strategy forum from innovative therapies for children with cancer and international society of paediatric oncology Europe neuroblastoma. Eur. J. Cancer. 136, 52–68. https://doi.org/10.1016/j.ejca.2020.05.010 (2020).

    Google Scholar 

  46. Chi, Y. et al. A novel landscape of nuclear human CDK2 substrates revealed by in situ phosphorylation. Sci. Adv. 6, eaaz9899. https://doi.org/10.1126/sciadv.aaz9899 (2020).

    Google Scholar 

  47. Chi, Y. et al. Identification of CDK2 substrates in human cell lysates. Genome Biol 9, R149, (2008). https://doi.org/10.1186/gb-2008-9-10-r149

  48. Hydbring, P. et al. Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc. Natl. Acad. Sci. U S A. 107, 58–63. https://doi.org/10.1073/pnas.0900121106 (2010).

    Google Scholar 

  49. Bazzar, W. et al. Pharmacological inactivation of CDK2 inhibits MYC/BCL-XL-driven leukemia in vivo through induction of cellular senescence. Cell. Cycle. 20, 23–38. https://doi.org/10.1080/15384101.2020.1855740 (2021).

    Google Scholar 

  50. Bolin, S. et al. Combined BET bromodomain and CDK2 Inhibition in MYC-driven Medulloblastoma. Oncogene 37, 2850–2862. https://doi.org/10.1038/s41388-018-0135-1 (2018).

    Google Scholar 

  51. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–d677. https://doi.org/10.1093/nar/gkae909 (2025).

    Google Scholar 

  52. Bonine, N. et al. NBAtlas: A harmonized single-cell transcriptomic reference atlas of human neuroblastoma tumors. Cell. Rep. 43, 114804. https://doi.org/10.1016/j.celrep.2024.114804 (2024).

    Google Scholar 

  53. Liaño-Pons, J. et al. Combined targeting of PRDX6 and GSTP1 as a potential differentiation strategy for neuroblastoma treatment. Proc. Natl. Acad. Sci. U S A. 122, e2427211122. https://doi.org/10.1073/pnas.2427211122 (2025).

    Google Scholar 

  54. Ruiz-Pérez, M. V. et al. Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma. iScience 24, 102128. https://doi.org/10.1016/j.isci.2021.102128 (2021).

    Google Scholar 

  55. Dzieran, J. et al. MYCN-amplified neuroblastoma maintains an aggressive and undifferentiated phenotype by deregulation of Estrogen and NGF signaling. Proc. Natl. Acad. Sci. U S A. 115, E1229–e1238. https://doi.org/10.1073/pnas.1710901115 (2018).

    Google Scholar 

  56. Kang, J. H. et al. MYCN Silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem. Biophys. Res. Commun. 351, 192–197. https://doi.org/10.1016/j.bbrc.2006.10.020 (2006).

    Google Scholar 

  57. Lutz, W. et al. Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13, 803–812 (1996).

    Google Scholar 

  58. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514. https://doi.org/10.1101/gad.836800 (2000).

    Google Scholar 

  59. Filippakopoulos, P. et al. Selective Inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). http://www.nature.com/nature/journal/v468/n7327/abs/nature09504.html#supplementary-information

    Google Scholar 

  60. Agarwal, P. et al. MYCN amplification is associated with reduced expression of genes encoding γ-Secretase complex and NOTCH signaling components in neuroblastoma. Int. J. Mol. Sci. 24 https://doi.org/10.3390/ijms24098141 (2023).

  61. Ianevski, A., Giri, A. K. & Aittokallio, T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 50, W739–w743. https://doi.org/10.1093/nar/gkac382 (2022).

    Google Scholar 

  62. Fagundes, R., Teixeira, L. K. & Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front. Cell. Dev. Biol. 9, 774845. https://doi.org/10.3389/fcell.2021.774845 (2021).

    Google Scholar 

  63. Hydbring, P. & Larsson, L. G. Cdk2: a key regulator of the senescence control function of Myc. Aging (Albany NY). 2, 244–250. https://doi.org/10.18632/aging.100140 (2010).

    Google Scholar 

  64. Chen, S. et al. Cyclin-dependent kinases regulate epigenetic gene Silencing through phosphorylation of EZH2. Nat. Cell. Biol. 12, 1108–1114. https://doi.org/10.1038/ncb2116 (2010).

    Google Scholar 

  65. O’Connor, P. M. Mammalian G1 and G2 phase checkpoints. Cancer Surv. 29, 151–182 (1997).

    Google Scholar 

  66. Henriksen, J. R. et al. Conditional expression of retrovirally delivered anti-MYCN ShRNA as an in vitro model system to study neuronal differentiation in MYCN-amplified neuroblastoma. BMC Dev. Biol. 11, 1. https://doi.org/10.1186/1471-213X-11-1 (2011).

    Google Scholar 

  67. Valentijn, L. J. et al. Functional MYCN signature predicts outcome of neuroblastoma irrespective of < i>MYCN amplification. Proceedings of the National Academy of Sciences 109, 19190–19195, doi: (2012). https://doi.org/10.1073/pnas.1208215109

  68. Fredlund, E., Ringnér, M., Maris, J. M. & Påhlman, S. High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc. Natl. Acad. Sci. U S A. 105, 14094–14099. https://doi.org/10.1073/pnas.0804455105 (2008).

    Google Scholar 

  69. Ferguson, K. M. et al. Palbociclib releases the latent differentiation capacity of neuroblastoma cells. Dev Cell 58, 1967–1982.e (1968). https://doi.org/10.1016/j.devcel.2023.08.028 (2023).

  70. Zhang, H. et al. Targeting CDK9 reactivates epigenetically silenced genes in cancer. Cell 175, 1244–1258e1226. https://doi.org/10.1016/j.cell.2018.09.051 (2018).

    Google Scholar 

  71. Chen, Z. et al. Multiple CDK inhibitor Dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Sci. Rep. 6, 29090. https://doi.org/10.1038/srep29090 (2016).

    Google Scholar 

  72. Shokraie, F. et al. CDK inhibitors promote neuroblastoma cell differentiation and increase sensitivity to retinoic acid-a promising combination strategy for therapeutic intervention. Cell. Death Discov. 11, 363. https://doi.org/10.1038/s41420-025-02637-z (2025).

    Google Scholar 

  73. Kranenburg, O., Scharnhorst, V., Van der Eb, A. J. & Zantema, A. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells. J. Cell. Biol. 131, 227–234. https://doi.org/10.1083/jcb.131.1.227 (1995).

    Google Scholar 

  74. Harbour, J. W., Luo, R. X., Santi, A. D., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869. https://doi.org/10.1016/S0092-8674(00)81519-6 (1999).

    Google Scholar 

  75. Farrell, A. S. & Sears, R. C. MYC degradation. Cold Spring Harb Perspect. Med. 4 https://doi.org/10.1101/cshperspect.a014365 (2014).

  76. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy–analysis of affymetrix genechip data at the probe level. Bioinformatics 20, 307–315. https://doi.org/10.1093/bioinformatics/btg405 (2004).

    Google Scholar 

  77. Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1, e90. https://doi.org/10.1002/cpz1.90 (2021).

    Google Scholar 

  78. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–97. https://doi.org/10.1093/nar/gkw377 (2016).

    Google Scholar 

  79. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 18, 100–106. https://doi.org/10.1038/s41592-020-01018-x (2021).

    Google Scholar 

  80. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinform. 22, 433. https://doi.org/10.1186/s12859-021-04344-9 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors express their great gratitude to all funding agencies, biomedicum imaging core facility and the biomedicum common virus laboratory BSL-2 at the Karolinska Institutet.

Funding

Open access funding provided by Karolinska Institute. This work was supported by grants from the Swedish Childhood Cancer Foundation (Barncancerfonden) (MA & LGL), O. E. och Edla Johanssons vetenskapliga stiftelse (MA), Stiftelsen Lars Hiertas Minne (MA), Fredrik och Ingrid Thurings Stiftelse (MA), and Lillian Sagens och Curt Ericssons Forskningsstiftelse (MA), The Swedish Cancer Foundation (Cancerfonden) (LGL), NovoNordisk Foundation (LGL), MyCural Therapeutics AB (LGL) and the Norwegian Cancer Society (216113, KL).

Author information

Author notes
  1. Ada Nursel Topçu

    Present address: Institute for Neuroscience and Cardiovascular Research, The University of Edinburgh, Edinburgh, UK

  2. Marta Valenti

    Present address: Centre for Regenerative Medicine “Stefano Ferrari”, Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy

  3. These authors contributed equally: Mohammad Alzrigat and Loay Mahmoud.

Authors and Affiliations

  1. Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Stockholm, Sweden

    Mohammad Alzrigat, Ada Nursel Topçu, Marta Valenti, Puck Veen, Fabian John & Lars-Gunnar Larsson

  2. Department of Chemistry and Biomedical Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway

    Loay Mahmoud & Kaisa Lehti

  3. Department of Pharmaceutical Biosciences, Uppsala Biomedical Centre, Uppsala University, Uppsala, Sweden

    Lu Zhang, Wesam Bazzar & Lars-Gunnar Larsson

Authors
  1. Mohammad Alzrigat
    View author publications

    Search author on:PubMed Google Scholar

  2. Loay Mahmoud
    View author publications

    Search author on:PubMed Google Scholar

  3. Ada Nursel Topçu
    View author publications

    Search author on:PubMed Google Scholar

  4. Marta Valenti
    View author publications

    Search author on:PubMed Google Scholar

  5. Lu Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Puck Veen
    View author publications

    Search author on:PubMed Google Scholar

  7. Fabian John
    View author publications

    Search author on:PubMed Google Scholar

  8. Wesam Bazzar
    View author publications

    Search author on:PubMed Google Scholar

  9. Kaisa Lehti
    View author publications

    Search author on:PubMed Google Scholar

  10. Lars-Gunnar Larsson
    View author publications

    Search author on:PubMed Google Scholar

Contributions

MA and LGL conceptualized and supervised the study, acquired funding, and wrote the manuscript. MA, LM, ANT, MV, LZ, PV, FJ, and WB performed experiments, analyzed, interpreted, and visualized the data. KL provided resources, supervision of LM, analyzed and interpreted the data. All authors have read and approved the final draft of the manuscript.

Corresponding author

Correspondence to Mohammad Alzrigat.

Ethics declarations

Competing interests

LGL is cofounder of MyCural Therapeutics AB and has ownership interests (including patents) in this company.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzrigat, M., Mahmoud, L., Topçu, A.N. et al. CDK2 inhibition promotes neuronal differentiation in neuroblastoma. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38123-4

Download citation

  • Received: 24 May 2025

  • Accepted: 29 January 2026

  • Published: 06 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38123-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Neuroblastoma
  • CDK2
  • Neuronal differentiation
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer