Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Bioengineering approaches to dynamic impact analysis for cranial fracture interpretation in arcaheology
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Bioengineering approaches to dynamic impact analysis for cranial fracture interpretation in arcaheology

  • Daniel Rodríguez-Iglesias  ORCID: orcid.org/0000-0002-9644-74771,
  • Ana Pantoja-Pérez  ORCID: orcid.org/0000-0001-9302-17561,2,
  • Ángel De La Rosa  ORCID: orcid.org/0000-0002-5862-86053,
  • Pedro Latorre-Carmona  ORCID: orcid.org/0000-0001-6984-51734 &
  • …
  • Nohemi Sala  ORCID: orcid.org/0000-0002-0896-14931,2 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Anatomy
  • Medical research

Abstract

Cranial fractures are widely documented in archaeological contexts, yet the application of fracture mechanics to differentiate traumatic events remains limited. This study analyses a dataset of 234 human cadavers subjected to 329 experimentally controlled blunt-impact tests, examining mechanical variables and fracture patterns that could be relevant to archaeological interpretation. The results show substantial methodological variability across the analysed studies. Analysis of these studies indicates that impact energy is the most reliable parameter for assessing fracture severity, suggesting a preliminary fracture threshold of around 2000 N, and that bone thickness is a major determinant of cranial resistance. Clear differences in fracture morphology according to impact surface were also observed: focal surfaces frequently produce depressed and comminuted fractures, whereas broad surfaces predominantly generate linear fractures. These data provide a framework for archaeological analysis: bone thickness, fracture morphology, and the presence and distribution of secondary fractures offer indirect but informative proxies for impact energy and surface characteristics, which could help to distinguish violent from non-violent events. This study emphasizes the need for dynamic fracture-mechanics approaches and targeted experimental work to better characterise archaeological impacts.

Data availability

The datasets generated are included in the Supplementary Information.

References

  1. Arsuaga, J. L. et al. Neandertal roots: cranial and chronological evidence from Sima de Los Huesos. Science 344, 1358–1363. https://doi.org/10.1126/science.1253958 (2014).

    Google Scholar 

  2. Sala, N. et al. Lethal interpersonal violence in the middle pleistocene. PLoS One. 10, e0126589. https://doi.org/10.1371/journal.pone.0126589 (2015).

    Google Scholar 

  3. Sala, N., Pantoja-Pérez, A., Arsuaga, J. L., Pablos, A. & Martínez, I. The Sima de Los Huesos crania: analysis of the cranial breakage patterns. J. Archaeol. Sci. 72, 25–43. https://doi.org/10.1016/j.jas.2016.06.001 (2016).

    Google Scholar 

  4. Sala, N., Pantoja-Pérez, A., Gracia, A. & Arsuaga, J. L. Taphonomic‐forensic analysis of the hominin skulls from the Sima de Los Huesos. Anat. Rec. 307, 2259–2277. https://doi.org/10.1002/ar.24883 (2024).

    Google Scholar 

  5. Churchill, S. E., Franciscus, R. G., McKean-Peraza, H. A., Daniel, J. A. & Warren, B. R. Shanidar 3 neandertal rib puncture wound and paleolithic weaponry. J. Hum. Evol. 57, 163–178. https://doi.org/10.1016/j.jhevol.2009.05.010 (2009).

    Google Scholar 

  6. Coqueugniot, H. et al. Earliest cranio-encephalic trauma from the Levantine middle palaeolithic: 3D reappraisal of the Qafzeh 11 skull, consequences of pediatric brain damage on individual life condition and social care. PLoS One. 9, e102822. https://doi.org/10.1371/journal.pone.0102822 (2014).

    Google Scholar 

  7. Knüsel, C. J., Thibeault, A. & Villotte, S. A cranial injury from the earliest gravettian at the Cro-Magnon rock shelter (Vezere Valley, Dordogne, Southwest France). J. Hum. Evol. 177, 103329. https://doi.org/10.1016/j.jhevol.2023.103329 (2023).

    Google Scholar 

  8. Pantoja-Pérez, A., Martín-Francés, L., May, H., Hershkovitz, I. & Sala, N. New potential case of Paleolithic interpersonal violence: First taphonomic approach from Qafzeh-25, Israel. (2023).

  9. Trinkaus, E. & Buzhilova, A. P. The death and burial of Sunghir 1. Int. J. Osteoarchaeol. 22, 655–666. https://doi.org/10.1002/oa.1227 (2012).

    Google Scholar 

  10. Zollikofer, C. P., Ponce de León, M. S., Vandermeersch, B. & Lévêque, F. Evidence for interpersonal violence in the St. Césaire Neanderthal. Proceedings of the National Academy of Sciences 99, 6444–6448 (2002). https://doi.org/10.1073/pnas.082111899

  11. Fibiger, L., Ahlström, T., Meyer, C. & Smith, M. Conflict, violence, and warfare among early farmers in Northwestern Europe. Proc. Natl. Acad. Sci. 120, e2209481119. https://doi.org/10.1073/pnas.2209481119 (2023).

  12. Meyer, C. et al. Early neolithic executions indicated by clustered cranial trauma in the mass grave of Halberstadt. Nat. Commun. 9, 2472. https://doi.org/10.1038/s41467-018-04773-w (2018). https://doi.org/.

    Google Scholar 

  13. Moreno-Ibáñez, M. Á., Saladié, P., Morales, J. I., Cebrià, A. & Fullola, J. M. Was it an axe or an adze? A cranial trauma case study from the late Neolithic–Chalcolithic site of Cova Foradada (Calafell, Spain). Int. J. Paleopathol. 32, 23–30. https://doi.org/10.1016/j.ijpp.2020.11.002 (2021).

    Google Scholar 

  14. Binder, M. & Quade, L. Death on a Napoleonic battlefield - Peri-mortem trauma in soldiers from the battle of Aspern 1809. Int. J. Paleopathol. 22, 66–77. https://doi.org/10.1016/j.ijpp.2018.05.007 (2018).

    Google Scholar 

  15. Brødholt, E. T. & Holck, P. Skeletal trauma in the burials from the Royal church of St. Mary in medieval Oslo. Int. J. Osteoarchaeol. 22, 201–218. https://doi.org/10.1002/oa.1198 (2010).

    Google Scholar 

  16. Lahr, M. M. et al. Inter-group violence among early holocene hunter-gatherers of West Turkana, Kenya. Nature 529, 394–398. https://doi.org/10.1038/nature16477 (2016).

    Google Scholar 

  17. Messina, A. D., Carotenuto, G., Micciche, R. & Sineo, L. Fatal cranial injury in an individual from Messina (Sicily) during the times of the Roman empire. J. Forensic Leg. Med. 20, 1018–1023. https://doi.org/10.1016/j.jflm.2013.09.023 (2013).

    Google Scholar 

  18. Moreno-Ibánez, M. A. et al. Death in the high mountains: evidence of interpersonal violence during late chalcolithic and early bronze age at Roc de les Orenetes (Eastern Pyrenees, Spain). Am. J. Biol. Anthropol. 184, e24909. https://doi.org/10.1002/ajpa.24909 (2024).

    Google Scholar 

  19. Erfan, M. et al. Cranial trauma in ancient Egyptians from the Bahriyah oasis, Greco-Roman period. Res. J. Med. Med. Sci. 4, 78–84 (2009).

    Google Scholar 

  20. Brink, O. V. & Jensen, A. Pattern of injuries due to interpersonal violence. Injury 29, 705–709. (1998). https://doi.org/10.1016/S0020-1383(98)00176-4

    Google Scholar 

  21. Lovell, N. C. Trauma analysis in paleopathology. Am. J. Phys. Anthropol. 104, 139–170 https://doi.org/10.1002/(SICI)1096-8644(1997)25+<139::AID-AJPA6>3.0.CO;2-%23 (1998).

  22. Wedel, V. L. & Galloway, A. Broken Bones: Anthropological Analysis of Blunt Force Trauma (Charles C. Thomas, 2014).

  23. Berryman, H. E. & Symes, S. A. Forensic Osteology: Adv. Identif. Hum. Remains 2 333–352 (1998).

    Google Scholar 

  24. Bello, S. M. & Crété, L. Taphonomic approach to the interpretation of isolated human skulls: distinguishing natural from intentional deposition. J. Archaeol. Method Theory. 32, 3 (2025). https://doi.org/10.1007/s10816-024-09675-4

  25. Kranioti, E. Forensic investigation of cranial injuries due to blunt force trauma: current best practice. Res. Rep. Forensic Med. Sci. https://doi.org/10.2147/RRFMS.S70423 (2015).

    Google Scholar 

  26. Isa, M. I. et al. Experimental investigation of cranial fracture initiation in blunt human head impacts. Forensic Sci. Int. 300, 51–62. https://doi.org/10.1016/j.forsciint.2019.04.003 (2019).

    Google Scholar 

  27. Isa, M. I. et al. Effects of input energy and impactor shape on cranial fracture patterns. Forensic Sci. Int. 352, 111859. https://doi.org/10.1016/j.forsciint.2023.111859 (2023).

    Google Scholar 

  28. Dyer, M. J. First Analysis of Multiple Blunt Force weapon-tools Using skin-skull-brain Models To Evaluate inter-personal Violence in the European Neolithic (University of Edinburgh, 2019).

  29. Ruchonnet, A., Diehl, M., Tang, Y. H. & Kranioti, E. F. Cranial blunt force trauma in relation to the victim’s position: an experimental study using polyurethane bone spheres. Forensic Sci. Int. 301, 350–357. https://doi.org/10.1016/j.forsciint.2019.05.051 (2019).

    Google Scholar 

  30. Moreno-Ibáñez, M. Á., Fibiger, L. & Saladié, P. Unraveling neolithic sharp-blunt cranial trauma: experimental approach through synthetic analogues. J. Archaeol. Sci. 151, 105739. https://doi.org/10.1016/j.jas.2023.105739 (2023).

    Google Scholar 

  31. Maharaj, P. & Enicker, B. Compound elevated skull fractures: a retrospective descriptive study. Br. J. Neurosurg. 38, 1126–1131. https://doi.org/10.1080/02688697.2022.2063256 (2024).

    Google Scholar 

  32. Tedla, S. G., Massoud, T. F. & Tong, E. in What Radiology Residents Need to Know: Neuroradiology What Radiology Residents Need to Know (eds BA Vachha, G Moonis, M Wintermark, & Tarik F Massoud) Ch. Chapter 8, 127–135Springer Cham, (2025).

  33. Cormier, J. et al. The tolerance of the frontal bone to blunt impact. J. Biomech. Eng. 133, 021004. https://doi.org/10.1115/1.4003312 (2011).

    Google Scholar 

  34. Hodgson, V. R., Brinn, J., Thomas, L. & Greenberg, S. Fracture Behavior of the Skull Frontal Bone against Cylindrical Surfaces (Report No. 700909, (SAE International, 1970).

  35. Hodgson, V. R. & Thomas, L. Breaking Strength of the Human Skull vs. Impact Surface curvature. Report No. FH-11-7609, 62 (Wayne State University, School of Medicine (Department of Neurosurgery, 1971).

  36. Hodgson, V. R. & Thomas, L. M. Breaking Strength of the Human Skull Vs Impact Surface curvature. Report No. DOT-HS-146-2-230, 194 (Wayne State University, School of Medicine, Department of Neurosurgery, 1973).

  37. Greenwood, D. T. Principles of Dynamics Vol. 21 (Prentice-Hall, 1988).

  38. French, A. P. Mecánica newtoniana. (Reverté, (2024).

  39. Schneider, D. C. & Nahum, A. M. Impact Studies of Facial Bones and Skull (Report No. 720965, (SAE International, 1972).

  40. Delye, H. et al. Biomechanics of frontal skull fracture. J. Neurotrauma. 24, 1576–1586. https://doi.org/10.1089/neu.2007.0283 (2007).

    Google Scholar 

  41. Fenton, T. W., Haut, R. C. & Wei, F. Building a Science of Adult Cranial Fracture (Michigan State University, 2015).

  42. Yoganandan, N. et al. Biomechanics of skull fracture. J. Neurotrauma. 12 https://doi.org/10.1089/neu.1995.12.659 (1995).

  43. Huelke, D. F., Buege, L. J. & Harger, J. H. Bone fractures produced by high velocity impacts. Am. J. Anat. 120, 123–131. https://doi.org/10.1002/aja.1001200110 (1967).

    Google Scholar 

  44. Paschall, A. & Ross, A. H. Bone mineral density and wounding capacity of handguns: implications for Estimation of caliber. Int. J. Leg. Med. 131, 161–166. https://doi.org/10.1007/s00414-016-1420-6 (2017).

    Google Scholar 

  45. Gurdjian, E. S., Webster, J. E. & Lissner, H. R. Studies of skull fracture with particular reference to engineering factors. Am. J. Sur. 78, 736–742. https://doi.org/10.1016/0002-9610(49)90315-3 (1949).

    Google Scholar 

  46. Gurdjian, E., Webster, J. E. & Lissner, H. The mechanism of skull fracture. Radiology 54, 313–339. https://doi.org/10.1148/54.3.313 (1950).

    Google Scholar 

  47. Raymond, D., Van Ee, C., Crawford, G. & Bir, C. Tolerance of the skull to blunt ballistic temporo-parietal impact. J. Biomech. 42, 2479–2485. https://doi.org/10.1016/j.jbiomech.2009.07.018 (2009).

    Google Scholar 

  48. Gurdjian, E. S., Webstef, J. & Lissner, H. R. Observations on prediction of fracture site in head injury. Radiology 60, 226–235. https://doi.org/10.1148/60.2.226 (1953).

    Google Scholar 

  49. Nahum, A. M., Gatts, J. D., Gadd, C. W. & Danforth, J. Impact Tolerance of the Skull and face. Report No. 680785 (SAE International, 1968).

  50. Gurdjian, E. S. Impact Head Injury: mechanistic, clinical, and Preventive Correlations (Charles C. Thomas, 1975).

  51. Betz, P., Stiefel, D., Hausmann, R. & Eisenmenger, W. Fractures at the base of the skull in gunshots to the head. Forensic Sci. Int. 86, 155–161. https://doi.org/10.1016/S0379-0738(97)02121-X (1997).

    Google Scholar 

  52. Palomo Rando, J., Ramos Medina, V., Palomo Gómez, I. & Lopez Calvo, A. Santos Amaya, I. Patología forense y neurología asociada de Los traumatismos craneoencefálicos. Estudio práctico. Cuad. Med. Forense. 14, 87–118 (2008).

    Google Scholar 

  53. Samandouras, G. The neurosurgeon’s handbook (Oxford University Press, 2010).

  54. Vakil, M. T. & Singh, A. K. A review of penetrating brain trauma: epidemiology, pathophysiology, imaging assessment, complications, and treatment. Emerg. Radiol. 24, 301–309. https://doi.org/10.1007/s10140-016-1477-z (2017).

    Google Scholar 

  55. Kroman, A., Kress, T. & Porta, D. Fracture propagation in the human cranium: a re-testing of popular theories. Clin. Anat. 24, 309–318. https://doi.org/10.1002/ca.21129 (2011).

    Google Scholar 

  56. Thompson-Bagshaw, D. W., Quarrington, R. D., Dwyer, A. M., Jones, N. R. & Jones, C. F. The structural response of the human head to a vertex impact. Ann. Biomed. Eng. 51, 2897–2907. https://doi.org/10.1007/s10439-023-03358-z (2023).

    Google Scholar 

  57. McElhaney, J. H., Melvin, J. W., Roberts, V. L. & Portnoy, H. D. in Perspectives in Biomedical Engineering: Proceedings of a Symposium Organised in Association with the Biological Engineering Society and Held in the University of Strathclyde, Glasgow, June 1972 (ed R. M. Kenedi) 215–222 (1973).

  58. Chattopadhyay, S. & Tripathi, C. Skull fracture and haemorrhage pattern among fatal and nonfatal head injury assault victims - a critical analysis. J. Inj Violence Res. 2, 99–103. https://doi.org/10.5249/jivr.v2i2.46 (2010).

    Google Scholar 

  59. Guyomarc’h, P., Campagna-Vaillancourt, M., Kremer, C. & Sauvageau, A. Discrimination of falls and blows in blunt head trauma: a multi-criteria approach. J. Forensic Sci. 55, 423–427. https://doi.org/10.1111/j.1556-4029.2009.01310.x (2010).

    Google Scholar 

  60. Lefèvre, T., Alvarez, J. C. & de la Lorin, G. Discriminating factors in fatal blunt trauma from low level falls and homicide. Forensic Sci. Med. Pathol. 11, 152–161. https://doi.org/10.1007/s12024-014-9651-7 (2015).

    Google Scholar 

  61. Rowbotham, S. K., Mole, C. G., de Boer, H. H., Cordner, S. M. & Blau, S. Differentiating fatal one-punch assaults from standing height falls based on skeletal trauma: a pilot study. Aust J. Forensic Sci. 1–18. https://doi.org/10.1080/00450618.2023.2292126 (2023).

  62. Saenz, N. M. & Tallman, S. D. Fracture variation in survivable versus fatal blunt force trauma associated with intimate partner violence. Forensic Sci. Int. 357, 112000. https://doi.org/10.1016/j.forsciint.2024.112000 (2024).

    Google Scholar 

  63. Stewart, T. D. Essentials of Forensic Anthropology: Especially as Developed in the United States (Charles C. Thomas, 1979).

  64. Malik, Y., Chaliha, R. R., Malik, P., Sangwan, K. & Rathi, C. Head in homicides: a post-mortem study from North East India. J. Indian Acad. Forensic Med. 35, 249–250. https://doi.org/10.1177/09710973201303 (2013).

    Google Scholar 

  65. Spitz, W. U. & Fisher, R. S. Medicolegal Investigation of Death: Guidelines for the Application of Pathology To Crime Investigation (Charles C. Thomas, 1973).

  66. Allsop, D. L., Perl, T. R. & Warner, C. Y. SAE International,. Force/deflection and fracture characteristics of the temporo-parietal region of the human head. Report No. 912907, (1991).

  67. Allsop, D. L., Warner, C. Y., Wille, M. G., Schneider, D. C. & Nahum, A. M. Facial Impact response—a Comparison of the Hybrid III Dummy and Human Cadaver (Report No. 881719, (SAE International, 1988).

  68. Got, C., Patel, A., Fayon, A., Tarriere, C. & Walfisch, G. Results of experimental head impacts on cadavers: the various data obtained and their relations to some measured physical parameters. Report No. 780887SAE International, (1978).

  69. McIntosh, A., Kallieris, D., Mattern, R. & Miltner, E. Head and neck injury resulting from low velocity direct impact. Report No. 933112, (SAE International, (1993).

  70. Stalnaker, R., Melvin, J., Nusholtz, G., Alem, N. & Benson, J. Head Impact response. Report No. 770921 (SAE International, 1977).

  71. Verschueren, P. et al. A new test set-up for skull fracture characterisation. J. Biomech. 40, 3389–3396. https://doi.org/10.1016/j.jbiomech.2007.05.018 (2007).

    Google Scholar 

  72. McIntosh, A. et al. in 40th Stapp Car Crash Conference. 1273–1280.

  73. Melvin, J. W., Fuller, P. M., Daniel, R. P. & Pavliscak, G. M. Human head and knee tolerance to localized impacts. SAE Tech. Paper. 1772–1782. https://doi.org/10.4271/690477 (1969).

  74. Nahum, A., Ward, C., Raasch, E., Adams, S. & Schneider, D. Experimental studies of side impact to the human head. SAE Tech. Paper. 3806–3814. https://doi.org/10.4271/801301 (1980).

  75. Nahum, A., Ward, C., Schneider, D., Raasch, F. & Adams, S. A study of impacts to the lateral protected and unprotected head. Rep. No 0148–7191, (1981). (SAE Technical Paper.

  76. Ono, K., Kikuchi, A., Nakamura, M., Kobayashi, H. & Nakamura, N. Human head tolerance to sagittal impact—reliable Estimation deduced from experimental head injury using subhuman primates and human cadaver skulls. SAE Tech. Paper. 3837–3866. https://doi.org/10.4271/801303 (1980).

  77. Yoganandan, N. et al. in IRCOBI Conference Lisbon.

  78. Nusholtz, G. S., Lux, P., Kaiker, P. & Janicki, M. A. Head impact response—Skull deformation and angular accelerations. SAE Tech. Paper. 800–833. https://doi.org/10.4271/841657 (1984).

  79. Wu, Q. et al. Impact response and energy absorption of human skull cellular bones. J. Mech. Behav. Biomed. Mater. 81, 106–119. https://doi.org/10.1016/j.jmbbm.2018.02.018 (2018). https://doi.org/https://doi.

    Google Scholar 

  80. Martrille, L. & Symes, S. A. Interpretation of long bones ballistic trauma. Forensic Sci. Int. 302, 109890. https://doi.org/10.1016/j.forsciint.2019.109890 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank Maryam Isa of Texas Tech University, and the DEATHREVOL team, specially Cecilia Calvo Simal and Jonas Grabbe for their valuable assistance. We also thank L. Ames for her thorough review of the manuscript.

Funding

This research was conducted within the framework of the DEATHREVOL project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 949330) and the Ramón y Cajal grant RYC2020-029656-I, funded by MCIN/AEI/https://doi.org/10.13039/501100011033 and “ESF Investing in your future”. It is also supported by the projects PID2021-122355NB-C31 and PID2021-122355NB-C33, funded by MCIN/AEI/https://doi.org/10.13039/501100011033/FEDER, EU, and by the Fundación Sabadell through the “Ayudas a la Investigación 2024”.

Author information

Authors and Affiliations

  1. Centro Nacional de Investigación sobre Evolución Humana (CENIEH), Burgos, Spain

    Daniel Rodríguez-Iglesias, Ana Pantoja-Pérez & Nohemi Sala

  2. Centro UCM-ISCIII de Evolución y Comportamiento Humanos, Avd/Monforte de Lemos, 5, Pabellón 14, Madrid, 28029, Spain

    Ana Pantoja-Pérez & Nohemi Sala

  3. Departamento de Tecnología Química, Energética y Mecánica, DIMME, Grupo de Durabilidad e Integridad Mecánica de Materiales Estructurales, Universidad Rey Juan Carlos, Madrid, Spain

    Ángel De La Rosa

  4. Departamento de Ingeniería Informática, Universidad de Burgos, Avda. Cantabria s/n, Burgos, 09006, Spain

    Pedro Latorre-Carmona

Authors
  1. Daniel Rodríguez-Iglesias
    View author publications

    Search author on:PubMed Google Scholar

  2. Ana Pantoja-Pérez
    View author publications

    Search author on:PubMed Google Scholar

  3. Ángel De La Rosa
    View author publications

    Search author on:PubMed Google Scholar

  4. Pedro Latorre-Carmona
    View author publications

    Search author on:PubMed Google Scholar

  5. Nohemi Sala
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: [DRI, APP, NSB]; Methodology: [DRI, ADLR, PLC, APP]; Formal analysis and investigation: [DRI, APP, ADLR, PLC, NSB]; Writing - original draft preparation: [DRI]; Writing - review and editing: [DRI, APP, ADLR, PLC, NSB]; Funding acquisition: [NSB].

Corresponding author

Correspondence to Daniel Rodríguez-Iglesias.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Iglesias, D., Pantoja-Pérez, A., De La Rosa, Á. et al. Bioengineering approaches to dynamic impact analysis for cranial fracture interpretation in arcaheology. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38313-0

Download citation

  • Received: 28 August 2025

  • Accepted: 29 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38313-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Fracture mechanics
  • Forensic anthropology
  • Trauma analysis
  • Interpersonal violence
  • Depressed fracture
  • Bone thickness
Download PDF

Associated content

Collection

Forensic and experimental archaeology

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing