Abstract
Cranial fractures are widely documented in archaeological contexts, yet the application of fracture mechanics to differentiate traumatic events remains limited. This study analyses a dataset of 234 human cadavers subjected to 329 experimentally controlled blunt-impact tests, examining mechanical variables and fracture patterns that could be relevant to archaeological interpretation. The results show substantial methodological variability across the analysed studies. Analysis of these studies indicates that impact energy is the most reliable parameter for assessing fracture severity, suggesting a preliminary fracture threshold of around 2000 N, and that bone thickness is a major determinant of cranial resistance. Clear differences in fracture morphology according to impact surface were also observed: focal surfaces frequently produce depressed and comminuted fractures, whereas broad surfaces predominantly generate linear fractures. These data provide a framework for archaeological analysis: bone thickness, fracture morphology, and the presence and distribution of secondary fractures offer indirect but informative proxies for impact energy and surface characteristics, which could help to distinguish violent from non-violent events. This study emphasizes the need for dynamic fracture-mechanics approaches and targeted experimental work to better characterise archaeological impacts.
Data availability
The datasets generated are included in the Supplementary Information.
References
Arsuaga, J. L. et al. Neandertal roots: cranial and chronological evidence from Sima de Los Huesos. Science 344, 1358–1363. https://doi.org/10.1126/science.1253958 (2014).
Sala, N. et al. Lethal interpersonal violence in the middle pleistocene. PLoS One. 10, e0126589. https://doi.org/10.1371/journal.pone.0126589 (2015).
Sala, N., Pantoja-Pérez, A., Arsuaga, J. L., Pablos, A. & Martínez, I. The Sima de Los Huesos crania: analysis of the cranial breakage patterns. J. Archaeol. Sci. 72, 25–43. https://doi.org/10.1016/j.jas.2016.06.001 (2016).
Sala, N., Pantoja-Pérez, A., Gracia, A. & Arsuaga, J. L. Taphonomic‐forensic analysis of the hominin skulls from the Sima de Los Huesos. Anat. Rec. 307, 2259–2277. https://doi.org/10.1002/ar.24883 (2024).
Churchill, S. E., Franciscus, R. G., McKean-Peraza, H. A., Daniel, J. A. & Warren, B. R. Shanidar 3 neandertal rib puncture wound and paleolithic weaponry. J. Hum. Evol. 57, 163–178. https://doi.org/10.1016/j.jhevol.2009.05.010 (2009).
Coqueugniot, H. et al. Earliest cranio-encephalic trauma from the Levantine middle palaeolithic: 3D reappraisal of the Qafzeh 11 skull, consequences of pediatric brain damage on individual life condition and social care. PLoS One. 9, e102822. https://doi.org/10.1371/journal.pone.0102822 (2014).
Knüsel, C. J., Thibeault, A. & Villotte, S. A cranial injury from the earliest gravettian at the Cro-Magnon rock shelter (Vezere Valley, Dordogne, Southwest France). J. Hum. Evol. 177, 103329. https://doi.org/10.1016/j.jhevol.2023.103329 (2023).
Pantoja-Pérez, A., Martín-Francés, L., May, H., Hershkovitz, I. & Sala, N. New potential case of Paleolithic interpersonal violence: First taphonomic approach from Qafzeh-25, Israel. (2023).
Trinkaus, E. & Buzhilova, A. P. The death and burial of Sunghir 1. Int. J. Osteoarchaeol. 22, 655–666. https://doi.org/10.1002/oa.1227 (2012).
Zollikofer, C. P., Ponce de León, M. S., Vandermeersch, B. & Lévêque, F. Evidence for interpersonal violence in the St. Césaire Neanderthal. Proceedings of the National Academy of Sciences 99, 6444–6448 (2002). https://doi.org/10.1073/pnas.082111899
Fibiger, L., Ahlström, T., Meyer, C. & Smith, M. Conflict, violence, and warfare among early farmers in Northwestern Europe. Proc. Natl. Acad. Sci. 120, e2209481119. https://doi.org/10.1073/pnas.2209481119 (2023).
Meyer, C. et al. Early neolithic executions indicated by clustered cranial trauma in the mass grave of Halberstadt. Nat. Commun. 9, 2472. https://doi.org/10.1038/s41467-018-04773-w (2018). https://doi.org/.
Moreno-Ibáñez, M. Á., Saladié, P., Morales, J. I., Cebrià, A. & Fullola, J. M. Was it an axe or an adze? A cranial trauma case study from the late Neolithic–Chalcolithic site of Cova Foradada (Calafell, Spain). Int. J. Paleopathol. 32, 23–30. https://doi.org/10.1016/j.ijpp.2020.11.002 (2021).
Binder, M. & Quade, L. Death on a Napoleonic battlefield - Peri-mortem trauma in soldiers from the battle of Aspern 1809. Int. J. Paleopathol. 22, 66–77. https://doi.org/10.1016/j.ijpp.2018.05.007 (2018).
Brødholt, E. T. & Holck, P. Skeletal trauma in the burials from the Royal church of St. Mary in medieval Oslo. Int. J. Osteoarchaeol. 22, 201–218. https://doi.org/10.1002/oa.1198 (2010).
Lahr, M. M. et al. Inter-group violence among early holocene hunter-gatherers of West Turkana, Kenya. Nature 529, 394–398. https://doi.org/10.1038/nature16477 (2016).
Messina, A. D., Carotenuto, G., Micciche, R. & Sineo, L. Fatal cranial injury in an individual from Messina (Sicily) during the times of the Roman empire. J. Forensic Leg. Med. 20, 1018–1023. https://doi.org/10.1016/j.jflm.2013.09.023 (2013).
Moreno-Ibánez, M. A. et al. Death in the high mountains: evidence of interpersonal violence during late chalcolithic and early bronze age at Roc de les Orenetes (Eastern Pyrenees, Spain). Am. J. Biol. Anthropol. 184, e24909. https://doi.org/10.1002/ajpa.24909 (2024).
Erfan, M. et al. Cranial trauma in ancient Egyptians from the Bahriyah oasis, Greco-Roman period. Res. J. Med. Med. Sci. 4, 78–84 (2009).
Brink, O. V. & Jensen, A. Pattern of injuries due to interpersonal violence. Injury 29, 705–709. (1998). https://doi.org/10.1016/S0020-1383(98)00176-4
Lovell, N. C. Trauma analysis in paleopathology. Am. J. Phys. Anthropol. 104, 139–170 https://doi.org/10.1002/(SICI)1096-8644(1997)25+<139::AID-AJPA6>3.0.CO;2-%23 (1998).
Wedel, V. L. & Galloway, A. Broken Bones: Anthropological Analysis of Blunt Force Trauma (Charles C. Thomas, 2014).
Berryman, H. E. & Symes, S. A. Forensic Osteology: Adv. Identif. Hum. Remains 2 333–352 (1998).
Bello, S. M. & Crété, L. Taphonomic approach to the interpretation of isolated human skulls: distinguishing natural from intentional deposition. J. Archaeol. Method Theory. 32, 3 (2025). https://doi.org/10.1007/s10816-024-09675-4
Kranioti, E. Forensic investigation of cranial injuries due to blunt force trauma: current best practice. Res. Rep. Forensic Med. Sci. https://doi.org/10.2147/RRFMS.S70423 (2015).
Isa, M. I. et al. Experimental investigation of cranial fracture initiation in blunt human head impacts. Forensic Sci. Int. 300, 51–62. https://doi.org/10.1016/j.forsciint.2019.04.003 (2019).
Isa, M. I. et al. Effects of input energy and impactor shape on cranial fracture patterns. Forensic Sci. Int. 352, 111859. https://doi.org/10.1016/j.forsciint.2023.111859 (2023).
Dyer, M. J. First Analysis of Multiple Blunt Force weapon-tools Using skin-skull-brain Models To Evaluate inter-personal Violence in the European Neolithic (University of Edinburgh, 2019).
Ruchonnet, A., Diehl, M., Tang, Y. H. & Kranioti, E. F. Cranial blunt force trauma in relation to the victim’s position: an experimental study using polyurethane bone spheres. Forensic Sci. Int. 301, 350–357. https://doi.org/10.1016/j.forsciint.2019.05.051 (2019).
Moreno-Ibáñez, M. Á., Fibiger, L. & Saladié, P. Unraveling neolithic sharp-blunt cranial trauma: experimental approach through synthetic analogues. J. Archaeol. Sci. 151, 105739. https://doi.org/10.1016/j.jas.2023.105739 (2023).
Maharaj, P. & Enicker, B. Compound elevated skull fractures: a retrospective descriptive study. Br. J. Neurosurg. 38, 1126–1131. https://doi.org/10.1080/02688697.2022.2063256 (2024).
Tedla, S. G., Massoud, T. F. & Tong, E. in What Radiology Residents Need to Know: Neuroradiology What Radiology Residents Need to Know (eds BA Vachha, G Moonis, M Wintermark, & Tarik F Massoud) Ch. Chapter 8, 127–135Springer Cham, (2025).
Cormier, J. et al. The tolerance of the frontal bone to blunt impact. J. Biomech. Eng. 133, 021004. https://doi.org/10.1115/1.4003312 (2011).
Hodgson, V. R., Brinn, J., Thomas, L. & Greenberg, S. Fracture Behavior of the Skull Frontal Bone against Cylindrical Surfaces (Report No. 700909, (SAE International, 1970).
Hodgson, V. R. & Thomas, L. Breaking Strength of the Human Skull vs. Impact Surface curvature. Report No. FH-11-7609, 62 (Wayne State University, School of Medicine (Department of Neurosurgery, 1971).
Hodgson, V. R. & Thomas, L. M. Breaking Strength of the Human Skull Vs Impact Surface curvature. Report No. DOT-HS-146-2-230, 194 (Wayne State University, School of Medicine, Department of Neurosurgery, 1973).
Greenwood, D. T. Principles of Dynamics Vol. 21 (Prentice-Hall, 1988).
French, A. P. Mecánica newtoniana. (Reverté, (2024).
Schneider, D. C. & Nahum, A. M. Impact Studies of Facial Bones and Skull (Report No. 720965, (SAE International, 1972).
Delye, H. et al. Biomechanics of frontal skull fracture. J. Neurotrauma. 24, 1576–1586. https://doi.org/10.1089/neu.2007.0283 (2007).
Fenton, T. W., Haut, R. C. & Wei, F. Building a Science of Adult Cranial Fracture (Michigan State University, 2015).
Yoganandan, N. et al. Biomechanics of skull fracture. J. Neurotrauma. 12 https://doi.org/10.1089/neu.1995.12.659 (1995).
Huelke, D. F., Buege, L. J. & Harger, J. H. Bone fractures produced by high velocity impacts. Am. J. Anat. 120, 123–131. https://doi.org/10.1002/aja.1001200110 (1967).
Paschall, A. & Ross, A. H. Bone mineral density and wounding capacity of handguns: implications for Estimation of caliber. Int. J. Leg. Med. 131, 161–166. https://doi.org/10.1007/s00414-016-1420-6 (2017).
Gurdjian, E. S., Webster, J. E. & Lissner, H. R. Studies of skull fracture with particular reference to engineering factors. Am. J. Sur. 78, 736–742. https://doi.org/10.1016/0002-9610(49)90315-3 (1949).
Gurdjian, E., Webster, J. E. & Lissner, H. The mechanism of skull fracture. Radiology 54, 313–339. https://doi.org/10.1148/54.3.313 (1950).
Raymond, D., Van Ee, C., Crawford, G. & Bir, C. Tolerance of the skull to blunt ballistic temporo-parietal impact. J. Biomech. 42, 2479–2485. https://doi.org/10.1016/j.jbiomech.2009.07.018 (2009).
Gurdjian, E. S., Webstef, J. & Lissner, H. R. Observations on prediction of fracture site in head injury. Radiology 60, 226–235. https://doi.org/10.1148/60.2.226 (1953).
Nahum, A. M., Gatts, J. D., Gadd, C. W. & Danforth, J. Impact Tolerance of the Skull and face. Report No. 680785 (SAE International, 1968).
Gurdjian, E. S. Impact Head Injury: mechanistic, clinical, and Preventive Correlations (Charles C. Thomas, 1975).
Betz, P., Stiefel, D., Hausmann, R. & Eisenmenger, W. Fractures at the base of the skull in gunshots to the head. Forensic Sci. Int. 86, 155–161. https://doi.org/10.1016/S0379-0738(97)02121-X (1997).
Palomo Rando, J., Ramos Medina, V., Palomo Gómez, I. & Lopez Calvo, A. Santos Amaya, I. Patología forense y neurología asociada de Los traumatismos craneoencefálicos. Estudio práctico. Cuad. Med. Forense. 14, 87–118 (2008).
Samandouras, G. The neurosurgeon’s handbook (Oxford University Press, 2010).
Vakil, M. T. & Singh, A. K. A review of penetrating brain trauma: epidemiology, pathophysiology, imaging assessment, complications, and treatment. Emerg. Radiol. 24, 301–309. https://doi.org/10.1007/s10140-016-1477-z (2017).
Kroman, A., Kress, T. & Porta, D. Fracture propagation in the human cranium: a re-testing of popular theories. Clin. Anat. 24, 309–318. https://doi.org/10.1002/ca.21129 (2011).
Thompson-Bagshaw, D. W., Quarrington, R. D., Dwyer, A. M., Jones, N. R. & Jones, C. F. The structural response of the human head to a vertex impact. Ann. Biomed. Eng. 51, 2897–2907. https://doi.org/10.1007/s10439-023-03358-z (2023).
McElhaney, J. H., Melvin, J. W., Roberts, V. L. & Portnoy, H. D. in Perspectives in Biomedical Engineering: Proceedings of a Symposium Organised in Association with the Biological Engineering Society and Held in the University of Strathclyde, Glasgow, June 1972 (ed R. M. Kenedi) 215–222 (1973).
Chattopadhyay, S. & Tripathi, C. Skull fracture and haemorrhage pattern among fatal and nonfatal head injury assault victims - a critical analysis. J. Inj Violence Res. 2, 99–103. https://doi.org/10.5249/jivr.v2i2.46 (2010).
Guyomarc’h, P., Campagna-Vaillancourt, M., Kremer, C. & Sauvageau, A. Discrimination of falls and blows in blunt head trauma: a multi-criteria approach. J. Forensic Sci. 55, 423–427. https://doi.org/10.1111/j.1556-4029.2009.01310.x (2010).
Lefèvre, T., Alvarez, J. C. & de la Lorin, G. Discriminating factors in fatal blunt trauma from low level falls and homicide. Forensic Sci. Med. Pathol. 11, 152–161. https://doi.org/10.1007/s12024-014-9651-7 (2015).
Rowbotham, S. K., Mole, C. G., de Boer, H. H., Cordner, S. M. & Blau, S. Differentiating fatal one-punch assaults from standing height falls based on skeletal trauma: a pilot study. Aust J. Forensic Sci. 1–18. https://doi.org/10.1080/00450618.2023.2292126 (2023).
Saenz, N. M. & Tallman, S. D. Fracture variation in survivable versus fatal blunt force trauma associated with intimate partner violence. Forensic Sci. Int. 357, 112000. https://doi.org/10.1016/j.forsciint.2024.112000 (2024).
Stewart, T. D. Essentials of Forensic Anthropology: Especially as Developed in the United States (Charles C. Thomas, 1979).
Malik, Y., Chaliha, R. R., Malik, P., Sangwan, K. & Rathi, C. Head in homicides: a post-mortem study from North East India. J. Indian Acad. Forensic Med. 35, 249–250. https://doi.org/10.1177/09710973201303 (2013).
Spitz, W. U. & Fisher, R. S. Medicolegal Investigation of Death: Guidelines for the Application of Pathology To Crime Investigation (Charles C. Thomas, 1973).
Allsop, D. L., Perl, T. R. & Warner, C. Y. SAE International,. Force/deflection and fracture characteristics of the temporo-parietal region of the human head. Report No. 912907, (1991).
Allsop, D. L., Warner, C. Y., Wille, M. G., Schneider, D. C. & Nahum, A. M. Facial Impact response—a Comparison of the Hybrid III Dummy and Human Cadaver (Report No. 881719, (SAE International, 1988).
Got, C., Patel, A., Fayon, A., Tarriere, C. & Walfisch, G. Results of experimental head impacts on cadavers: the various data obtained and their relations to some measured physical parameters. Report No. 780887SAE International, (1978).
McIntosh, A., Kallieris, D., Mattern, R. & Miltner, E. Head and neck injury resulting from low velocity direct impact. Report No. 933112, (SAE International, (1993).
Stalnaker, R., Melvin, J., Nusholtz, G., Alem, N. & Benson, J. Head Impact response. Report No. 770921 (SAE International, 1977).
Verschueren, P. et al. A new test set-up for skull fracture characterisation. J. Biomech. 40, 3389–3396. https://doi.org/10.1016/j.jbiomech.2007.05.018 (2007).
McIntosh, A. et al. in 40th Stapp Car Crash Conference. 1273–1280.
Melvin, J. W., Fuller, P. M., Daniel, R. P. & Pavliscak, G. M. Human head and knee tolerance to localized impacts. SAE Tech. Paper. 1772–1782. https://doi.org/10.4271/690477 (1969).
Nahum, A., Ward, C., Raasch, E., Adams, S. & Schneider, D. Experimental studies of side impact to the human head. SAE Tech. Paper. 3806–3814. https://doi.org/10.4271/801301 (1980).
Nahum, A., Ward, C., Schneider, D., Raasch, F. & Adams, S. A study of impacts to the lateral protected and unprotected head. Rep. No 0148–7191, (1981). (SAE Technical Paper.
Ono, K., Kikuchi, A., Nakamura, M., Kobayashi, H. & Nakamura, N. Human head tolerance to sagittal impact—reliable Estimation deduced from experimental head injury using subhuman primates and human cadaver skulls. SAE Tech. Paper. 3837–3866. https://doi.org/10.4271/801303 (1980).
Yoganandan, N. et al. in IRCOBI Conference Lisbon.
Nusholtz, G. S., Lux, P., Kaiker, P. & Janicki, M. A. Head impact response—Skull deformation and angular accelerations. SAE Tech. Paper. 800–833. https://doi.org/10.4271/841657 (1984).
Wu, Q. et al. Impact response and energy absorption of human skull cellular bones. J. Mech. Behav. Biomed. Mater. 81, 106–119. https://doi.org/10.1016/j.jmbbm.2018.02.018 (2018). https://doi.org/https://doi.
Martrille, L. & Symes, S. A. Interpretation of long bones ballistic trauma. Forensic Sci. Int. 302, 109890. https://doi.org/10.1016/j.forsciint.2019.109890 (2019).
Acknowledgements
We thank Maryam Isa of Texas Tech University, and the DEATHREVOL team, specially Cecilia Calvo Simal and Jonas Grabbe for their valuable assistance. We also thank L. Ames for her thorough review of the manuscript.
Funding
This research was conducted within the framework of the DEATHREVOL project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 949330) and the Ramón y Cajal grant RYC2020-029656-I, funded by MCIN/AEI/https://doi.org/10.13039/501100011033 and “ESF Investing in your future”. It is also supported by the projects PID2021-122355NB-C31 and PID2021-122355NB-C33, funded by MCIN/AEI/https://doi.org/10.13039/501100011033/FEDER, EU, and by the Fundación Sabadell through the “Ayudas a la Investigación 2024”.
Author information
Authors and Affiliations
Contributions
Conceptualization: [DRI, APP, NSB]; Methodology: [DRI, ADLR, PLC, APP]; Formal analysis and investigation: [DRI, APP, ADLR, PLC, NSB]; Writing - original draft preparation: [DRI]; Writing - review and editing: [DRI, APP, ADLR, PLC, NSB]; Funding acquisition: [NSB].
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rodríguez-Iglesias, D., Pantoja-Pérez, A., De La Rosa, Á. et al. Bioengineering approaches to dynamic impact analysis for cranial fracture interpretation in arcaheology. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38313-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38313-0