Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Elevation uncertainties in the Mekong Delta quantified using a transferable approach
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Elevation uncertainties in the Mekong Delta quantified using a transferable approach

  • Katharina Seeger1,2,3 &
  • Philip S. J. Minderhoud1,3,4 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Environmental sciences
  • Natural hazards

Abstract

The elevation of coastal lowlands relative to local sea level is a crucial determinant for their exposure and is key input for coastal hazard and relative sea-level rise impact assessments. For many data-sparse coastal lowlands worldwide, global digital elevation models are often the only source of information. While these provide an adequate spatial (i.e. horizontal) resolution for regional, delta-wide coastal assessments, their vertical errors in the range of several metres impede investigations of (relative) sea-level rise impact where changes occur on millimetre- to centimetre-scale. Assessing the quality of available elevation datasets is required to identify the best performing model(s) to use for generating reliable coastal impact and exposure assessments. While data-intrinsic inaccuracy has been extensively addressed both in dataset documentation and literature, the relevance and proper vertical datum conversion from global geoid and ellipsoid to local sea level is often still omitted in many applied studies from coastal research. Similarly, the impact of the actuality of elevation data (i.e. time since data acquisition) on assessments in coastal lowlands is so far understudied although elevation models may become quickly outdated, especially where coastal lowlands are facing high rates of elevation change resulting from the interplay of vertical land motion, (vertical) sediment accretion and sea-level change. Particularly for flat, low-lying subsiding coastal landscapes like the Mekong Delta, being in parts only a few decimetres elevated above sea level and experiencing land subsidence of up to several centimetres per year, the reliability of elevation data and adequate representation of elevation relative to local sea level as well as the consideration of factors impacting elevation over time is of utmost importance. We present a transferable and ultimately globally applicable approach to quantify and attribute uncertainties in elevation assessment for data-sparse coastal lowlands using global elevation models to sources such as inaccuracy, vertical datum offset and actuality. The approach combines openly available land elevation and sea-level datasets, integrated with non-linear time series and projections of sea-level change and vertical land motion while also pointing out the need of information on sediment accretion/erosion. We showcase this approach by revisiting land elevation in the Vietnamese Mekong Delta (i) by vertically referencing 11 commonly used global elevation models and an updated local elevation model to a common actual, local sea-level datum, and (ii) by conducting a thorough assessment of elevation model performance that not only allows for the quantification of errors and elevation assessment uncertainties but also their attribution to data-intrinsic inaccuracy, vertical datum offset and, tentatively, non-linear impact of elevation change due to vertical land motion (e.g. extraction-induced land subsidence) and sea-level change affecting the actuality of the elevation model. Our approach not only allows to improve the understanding of coastal elevation to further improve relative sea-level rise and flood impact assessments and to substantiate projections of future elevation in the Mekong Delta, but in its design, applying solely open data and commonly used GIS software, facilitates similar assessments of elevation model performance and elevation assessment uncertainties in other (data-sparse) coastal regions in the world.

Data availability

The Digital Elevation Models for the Mekong Delta based on global digital elevation models and converted to local mean sea level as indicated by mean dynamic topography (following the approach of this study), are publicly available under a CC-BY-NC-SA 4.0 license here: https://doi.org/10.5281/zenodo.18347786 (for the Mekong Delta only); and here: https://doi.org/10.5281/zenodo.18347901 (for the Mekong and its surroundings). TopoDEM_v2 is publicly available under a CC-BY 4.0 license here: https://doi.org/10.5281/zenodo.1834609.

References

  1. Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2 (1), 40–58. https://doi.org/10.1038/s43017-020-00115-x (2021).

    Google Scholar 

  2. Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise and deltas: causes of change and human dimension implications. Global Planet. Change. 50 (1–2), 63–82. https://doi.org/10.1016/j.gloplacha.2005.07.004 (2006).

    Google Scholar 

  3. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686. https://doi.org/10.1038/ngeo629 (2009).

    Google Scholar 

  4. Nicholls, R. J. et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change. 11 (4), 338–342. https://doi.org/10.1038/s41558-021-00993-z (2021).

    Google Scholar 

  5. Chan, F. K. S. et al. Building resilience in Asian mega-deltas. Nat. Rev. Earth Environ. 5 (7), 522–537. https://doi.org/10.1038/s43017-024-00561-x (2024).

    Google Scholar 

  6. Ohenhen, L. O. et al. Global subsidence of river deltas. Nature 649, 894–901 (2026). https://doi.org/10.1038/s41586-025-09928-6

    Google Scholar 

  7. Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 4741. https://doi.org/10.1038/s41467-020-18531-4 (2020).

    Google Scholar 

  8. Renaud, F. G. et al. Tipping from the holocene to the anthropocene: how threatened are major world deltas? Curr. Opin. Environ. Sustain. 5 (6), 644–654. https://doi.org/10.1016/j.cosust.2013.11.007 (2013).

    Google Scholar 

  9. Kulp, S. & Strauss, B. H. Global DEM errors underpredict coastal vulnerability to sea level rise and flooding. Front. Earth Sci. 4, 36. https://doi.org/10.3389/feart.2016.00036 (2016).

    Google Scholar 

  10. Gesch, D. Assessing global elevation models for mapping the low elevation coastal zone. Geomorphometry https://doi.org/10.5281/zenodo.8011577 (2023).

    Google Scholar 

  11. Seeger, K. et al. Nay win Oo & Brill, D. Assessing land elevation in the Ayeyarwady delta (Myanmar) and its relevance for studying sea level rise and delta flooding. Hydrol. Earth Syst. Sci. 27 (11), 2257–2281. https://doi.org/10.5194/hess-27-2257-2023 (2023).

    Google Scholar 

  12. Hauser, L. et al. A. A scoping study on coastal vulnerability to relative sea-level rise in the Gulf of Guinea. AFD Res. Papers. 283, 1–42 (2023). https://www.afd.fr/en/ressources/scoping-study-coastal-vulnerability-relative-sealevel-rise-gulf-guinea

    Google Scholar 

  13. Wilson, J. P. Digital terrain modeling. Geomorphology 137 (1), 107–121. https://doi.org/10.1016/j.geomorph.2011.03.012 (2012).

    Google Scholar 

  14. Guth, P. L. et al. Digital elevation models: terminology and definitions. Remote Sens. 13 (18), 3581. https://doi.org/10.3390/rs13183581 (2021).

    Google Scholar 

  15. Hodgson, M. E. & Bresnahan, P. Accuracy of airborne lidar-derived elevation. Photogramm Eng. Remote Sens. 70 (3), 331–339. https://doi.org/10.14358/PERS.70.3.331 (2004).

    Google Scholar 

  16. Buffington, K. J., Dugger, B. D., Thorne, K. M. & Takekawa, J. Y. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes. Remote Sens. Environ. 186, 616–625. https://doi.org/10.1016/j.rse.2016.09.020 (2016).

    Google Scholar 

  17. Ren, H. C. et al. Study on analysis from sources of error for airborne LIDAR. IOP Conf. Ser. : Earth Environ. Sci. 46 (1), 012030. https://doi.org/10.1088/1755-1315/46/1/012030 (2016).

    Google Scholar 

  18. Almar, R. et al. Coastal zone changes in West africa: challenges and opportunities for satellite Earth observations. Surv. Geophys. 44 (1), 249–275. https://doi.org/10.1007/s10712-022-09721-4 (2023).

    Google Scholar 

  19. Becker, M. et al. Coastal flooding in Asian megadeltas: recent advances, persistent challenges, and call for actions admidst local and global changes.. Rev. Geophys. 62(4), e2024RG000846 (2024).

    Google Scholar 

  20. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2004).

    Google Scholar 

  21. Abrams, M., Bailey, B., Tsu, H. & Hato, M. The ASTER global DEM. Photogramm Eng. Remote Sens. 76 (4), 344–348 (2010).

    Google Scholar 

  22. Tachikawa, T. et al. ASTER Global Elevation Model Version 2 – Summary of Validation Results. National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center, and Joint Japan-US ASTER Science Team, 26 pp., (2011). https://lpdaac.usgs.gov/documents/220/Summary_GDEM2_validation_report_final.pdf

  23. Tadono, T. et al. Generation of the 30 m-mesh global digital surface model by ALOS Prism. Int. Arch. Photogramm Remote Sens. Spat. Inf. Sci. XLI-B4, 157–162. https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016 (2016).

    Google Scholar 

  24. Wessel, B. TanDEM-X Ground Segment – DEM Products Specification Document. EOC, DLR, Oberpfaffenhofen, Germany, Public Document TD-GS-PS-0021, Issue 3.2, (2018). https://tandemx-science.dlr.de/

  25. Smith, R. G. & Berry, P. A. M. ACE2: Global Digital Elevation Model User Guide. 22 pp. (2009).

  26. Berry, P. A. M., Smith, R. G. & Benveniste, J. ACE2: The new global digital elevation model. in: gravity, geoid and earth observation, international association of geodesy symposia 135, edited by Mertiklas, S.P., Springer, Berlin, Heidelberg, Germany, 231–237, (2010). https://doi.org/10.1007/978-3-642-10634-7_30

  27. Berry, P. A. M., Smith, R., Benveniste, J., Altimeter Corrected & Elevations Version 2 (ACE2) [dataset] (Palisades, 2019). https://doi.org/10.7927/H40G3H78NASA Socioeconomic Data and Applications Center (SEDAC).

  28. Airbus Defence and Space: Copernicus Digital Elevation Model Product Handbook Version 3.0. Airbus, 38 pp. (2020).

  29. Yamazaki, D. et al. D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44 (11), 5844–5853. https://doi.org/10.1002/2017GL072874 (2017).

    Google Scholar 

  30. Hawker, L. et al. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett. 17 (2), 024016. https://doi.org/10.1088/1748-9326/ac4d4f (2022).

    Google Scholar 

  31. Kulp, S. A. & Strauss, B. H. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sens. Environ. 206 (1), 231–239. https://doi.org/10.1016/j.rse.2017.12.026 (2018).

    Google Scholar 

  32. Kulp, S. A. & Strauss, B. H. CoastalDEM v2.1: A high-accuracy and high-resolution global coastal elevation model trained on ICESat-2 satellite lidar. Climate Central Scientific Report, 17 pp., (2021). https://assets.ctfassets.net/cxgxgstp8r5d/3f1LzJSnp7ZjFD4loDYnrA/71eaba2b8f8d642dd9a7e6581dce0c66/CoastalDEM_2.1_Scientific_Report_.pdf

  33. Vernimmen, R., Hooijer, A. & Pronk, M. New ICESat-2 satellite lidar data allow first global lowland DTM suitable for accurate coastal flood risk assessment. Remote Sens. 12 (17), 2827. https://doi.org/10.3390/rs12172827 (2020).

    Google Scholar 

  34. Vernimmen, R. & Hooijer, A. New LiDAR-based elevation model shows greatest increase in global coastal exposure to flooding to be caused by early‐stage sea‐level rise. Earth’s Future https://doi.org/10.1029/2022EF002880 (2023).

    Google Scholar 

  35. Pronk, M. et al. DeltaDTM: A global coastal digital terrain model. Sci. Data. 11 (1), 273. https://doi.org/10.1038/s41597-024-03091-9 (2024).

    Google Scholar 

  36. Uhe, P. et al. FathomDEM: an improved global terrain map using a hybrid vision transformer model. Environ. Res. Lett. 20 (3), 034002. https://doi.org/10.1088/1748-9326/ada972 (2025).

    Google Scholar 

  37. Üstün, A., Abbak, R. A. & Zeray Östürk, E. Height biases of SRTM DEM related to EGM96: from a global perspective to regional practice. Surv. Rev. 50, 26–35. https://doi.org/10.1080/00396265.2016.1218159 (2016).

    Google Scholar 

  38. Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 10, 3847. https://doi.org/10.1038/s41467-019-11602-1 (2019).

    Google Scholar 

  39. Fusami, A. A., Edan, J. D. & Takana, A. Local orthometric height based on a combination of GPS-derived ellipsoidal height and geoid model: A review paper. J. Geodetic Sci. 13 (1), 20220158. https://doi.org/10.1515/jogs-2022-0158 (2023).

    Google Scholar 

  40. Minderhoud, P. S. J., Hlavacova, I., Kolomaznik, J. & Neussner, O. Towards unraveling total subsidence of a mega-delta–the potential of new PS InSAR data for the Mekong delta. Proc. Int. Assoc. Hydrol. Sci. 382, 327–332 (2020).

    Google Scholar 

  41. Dörr, N., Schenk, A. & Hinz, S. Land subsidence in the Mekong delta derived from advanced persistent scatterer interferometry with an infrastructural reference network. IEEE J. Sel. Top. Appl. Earth Obs Remote Sens. 17, 12077–12091 (2024). https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10578013

    Google Scholar 

  42. Copernicus Emergency Management Service Risk & Recovery Mapping Non-standardised products (FLEX). Lot 1 Final Report. EMSN-091: Assessing changes in subsidence rates in the low Pampanga river basin and Manila area, Philippines. (2021). https://mapping.emergency.copernicus.eu/activations/EMSN091/

  43. Schumann, G. et al. Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J. Photogramm Remote Sens. 63 (3), 283–296. https://doi.org/10.1016/j.isprsjprs.2007.09.004 (2008).

    Google Scholar 

  44. Cook, A. & Merwade, V. Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. J. Hydrol. 377 (1–2), 131–142. https://doi.org/10.1016/j.jhydrol.2009.08.015 (2009).

    Google Scholar 

  45. Hawker, L. et al. Implications of simulating global digital elevation models for flood inundation studies. Water Resour. Res. 54 (10), 7910–7928. https://doi.org/10.1029/2018WR023279 (2018).

    Google Scholar 

  46. Azizian, A. & Brocca, L. Determining the best remotely sensed DEM for flood inundation mapping in data sparse regions. Int. J. Remote Sens. 41 (5), 1884–1906. https://doi.org/10.1080/01431161.2019.1677968 (2020).

    Google Scholar 

  47. Xu, K. et al. The importance of digital elevation model selection in flood simulation and a proposed method to reduce DEM errors: a case study in Shanghai. Int. J. Disaster Risk Sci. 12, 890–902. https://doi.org/10.1007/s13753-021-00377-z (2021).

    Google Scholar 

  48. Almar, R. et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 12 (1), 3775. https://doi.org/10.1038/s41467-021-24008-9 (2021).

    Google Scholar 

  49. Wöppelmann, G. & Pirazzoli, P. Tide Gauges (ML Schwartz (ed.), Encyclopedia of Coastal Sciences, 2005).

  50. Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H. & Stouthamer, E. Digital elevation model of the Vietnamese Mekong delta based on elevation points from a national topographical map [dataset]. PANGAEA (2019). https://doi.org/10.1594/PANGAEA.902136

  51. Jousset, S. et al. New global mean dynamic topography CNES-CLS-22 combining Drifters, hydrological profiles and high frequency radar data. ESS Open. Archive. https://doi.org/10.22541/essoar.170158328.85804859/v2 (2023).

    Google Scholar 

  52. Pronk, M. DeltaDTM v1.1: A global coastal digital terrain model (Version 4) [dataset]. 4TU.ResearchData (2024). https://doi.org/10.4121/21997565.V4

  53. Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9 (8), 084010. https://doi.org/10.1088/1748-9326/9/8/084010 (2014).

    Google Scholar 

  54. Herrera-García, G. et al. Mapping the global threat of land subsidence. Science 371 (6524), 34–36. https://doi.org/10.1126/science.abb8549 (2021).

    Google Scholar 

  55. Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726. https://doi.org/10.1016/j.scitotenv.2018.03.372 (2018).

    Google Scholar 

  56. Minderhoud, P. S. J. et al. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 12 (6), 064006. https://doi.org/10.1088/1748-9326/aa7146 (2017).

    Google Scholar 

  57. Minderhoud, P. S. J., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction May drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2 (1), 011005. https://doi.org/10.1088/2515-7620/ab5e21 (2020b).

    Google Scholar 

  58. Permanent Service for Mean Sea Level (PSMSL). Permanent Service for Mean Sea Level – Tide Gauge Data: Vung Tau, (2025a). https://psmsl.org/data/obtaining/stations/1495.php

  59. Fox-Kemper, B. et al. Cryosphere and Sea Level Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R.,, and Cambridge University Press, Cambridge, 9-1-9-257 (2021).

  60. Garner, G. G. et al. IPCC AR6 Sea-Level Rise Projections, Version 20210809, PO.DAAC, CA, USA, Dataset, (2021). https://podaac.jpl.nasa.gov/announcements/2021-08-09-Sea-level-projections-from-the-IPCC-6th-Assessment-Report

  61. Garner, G. G. et al. Framework for assessing changes to sea-level (FACTS), Geoscientific Model Development, Zenodo https://zenodo.org/record/6419954 (2022).

  62. Gesch, D. B. Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure. Front. Earth Sci. 6, 230. https://doi.org/10.3389/feart.2018.00230 (2018).

    Google Scholar 

  63. Seeger, K., Minderhoud, P. S. J., Hauser, L. T., Teatini, P. & Woillez, M. N. How to assess coastal flood risk in data-sparse coastal lowlands? Accurate information on land elevation is key. Question Dev. 71, 1–4 (2024). https://www.afd.fr/en/ressources/how-assess-coastal-flood-risk-data-sparse-coastal-lowlands-accurate-information-land-elevation-key

    Google Scholar 

  64. Avornyo, S. Y. et al. The contribution of coastal land subsidence to potential sea-level rise impact in data-sparse settings: the case of ghana’s Volta delta. Quat Sci. Adv. 14, 100175. https://doi.org/10.1016/j.qsa.2024.100175 (2024).

    Google Scholar 

  65. Zoccarato, C., Minderhoud, P. S. J. & Teatini, P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam. Sci. Rep. 8 (1), 11437. https://doi.org/10.1038/s41598-018-29734-7 (2018).

    Google Scholar 

  66. Baldan, S., Minderhoud, P. S. J., Xotta, R., Zoccarato, C. & Teatini, P. Data-driven 3D modelling of long‐term holocene delta evolution and sediment compaction: the Mekong delta. Earth Surf. Processes Land. 50 (1), e6046. https://doi.org/10.1002/esp.6046 (2025).

    Google Scholar 

  67. de Wit, K. et al. Identifying causes of urban differential subsidence in the Vietnamese Mekong delta by combining InSAR and field observations. Remote Sens. 13 (2), 189. https://doi.org/10.3390/rs13020189 (2021).

    Google Scholar 

  68. Dunn, F. E. & Minderhoud, P. S. J. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. Commun. Earth Environ. 3(1), 2 (2022).

    Google Scholar 

  69. Dörr, N., Huu, L. V., Schenk, A. & Hinz, S. Drought-induced land subsidence in the Mekong Delta, Vietnam: Insights from SAR Interferometry. Geophys. Res. Lett. 52(18), e2025GL117096. https://doi.org/10.1029/2025GL117096 (2025).

    Google Scholar 

  70. Eslami, S. et al. Dynamics of salt intrusion in the Mekong delta: results of field observations and integrated coastal–inland modelling. Earth Surf. Dyn. 9 (4), 953–976. https://doi.org/10.5194/esurf-9-953-2021 (2021).

    Google Scholar 

  71. Dang, A. T., Reid, M. & Kumar, L. Assessing potential impacts of sea level rise on Mangrove ecosystems in the Mekong Delta, Vietnam. Reg. Environ. Change. 22 (2), 70. https://doi.org/10.1007/s10113-022-01925-z (2022).

    Google Scholar 

  72. Le, H. A., Nguyen, T., Gratiot, N., Deleersnijder, E. & Soares-Frazão, S. The multi-channel system of the Vietnamese Mekong delta: impacts on the flow dynamics under relative sea-level rise scenarios. Water 15 (20), 3597. https://doi.org/10.3390/w15203597 (2023).

    Google Scholar 

  73. Wood, M. et al. J. M. Risk of compound flooding substantially increases in the future Mekong river delta. Nat. Hazards Earth Syst. Sci. 24 (10), 3627–3649. https://doi.org/10.5194/nhess-24-3627-2024 (2024).

    Google Scholar 

  74. Dang, T. D., Cochrane, T. A., Arias, M. E. & Tri, V. P. D. Future hydrological alterations in the Mekong delta under the impact of water resources development, land subsidence and sea level rise. J. Hydrol. : Reg. Stud. 15, 119–133. https://doi.org/10.1016/j.ejrh.2017.12.002 (2018).

    Google Scholar 

  75. Tanaka, K., Fujihara, Y., Hoshikawa, K. & Fujii, H. Development of a flood water level Estimation method using satellite images and a digital elevation model for the Mekong floodplain. Hydrol. Sci. J. 64 (2), 241–253. https://doi.org/10.1080/02626667.2019.1578463 (2019).

    Google Scholar 

  76. Thanh, V. Q. et al. T. P. Flooding in the Mekong delta: the impact of Dyke systems on downstream hydrodynamics. Hydrol. Earth Syst. Sci. 24 (1), 189–212. https://doi.org/10.5194/hess-24-189-2020 (2020).

    Google Scholar 

  77. Wu, S. & Lei, Y. Multiscale flood disaster risk assessment in the Lancang-Mekong river basin: A focus on watershed and community levels. Atmosphere 14 (4), 657. https://doi.org/10.3390/atmos14040657 (2023).

    Google Scholar 

  78. Chen, A. et al. Impact of tropical cyclone precipitation on fluvial discharge in the Lancang–Mekong River Basin.. Geophys. Res. Lett. 52(8), e2024GL113199 (2024).

    Google Scholar 

  79. Yun, X., Song, J., Wang, J. & Bao, H. Modelling to assess the suitability of hydrological-hydrodynamic model under the hydropower development impact in the Lancang-Mekong river basin. J. Hydrol. 637, 131393. https://doi.org/10.1029/2024GL113199 (2024).

    Google Scholar 

  80. Merkens, J. L., Lincke, D., Hinkel, J., Brown, S. & Vafeidis, A. T. Regionalisation of population growth projections in coastal exposure analysis. Clim. Change. 151 (3), 413–426. https://doi.org/10.1007/s10584-018-2334-8 (2018).

    Google Scholar 

  81. Adegun, O. B. Flood-related challenges and impacts within coastal informal settlements: a case from Lagos, Nigeria. Int. J. Urban Sustainable Dev. 15 (1), 1–13. https://doi.org/10.1080/19463138.2022.2159415 (2023).

    Google Scholar 

  82. del Campo, F. M., Singh, S. J., Fishman, T., Thomas, A. & Drescher, M. The Bahamas at risk: material stocks, sea-level rise, and the implications for development. J. Ind. Ecol. 27 (4), 1165–1183. https://doi.org/10.1111/jiec.13402 (2023).

    Google Scholar 

  83. Vignudelli, S., Kostianoy, A. G., Cipollini, P. & Benveniste, J. Coastal Altimetry (Springer, 2011). https://doi.org/10.1007/978-3-642-12796-0

  84. Vignudelli, S. et al. Satellite altimetry measurements of sea level in the coastal zone. Surv. Geophys. 40, 1319–1349. https://doi.org/10.1007/s10712-019-09569-1 (2019).

    Google Scholar 

  85. Ince, E. S. et al. ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst. Sci. Data. 11, 647–674. https://doi.org/10.5194/essd-11-647-2019 (2019).

    Google Scholar 

  86. Vu, D. T., Bruinsma, S., Bonvalot, S., Remy, D. & Vergos, G. S. A. Quasigeoid-derived transformation model accounting for land subsidence in the Mekong delta towards height system unification in Vietnam. Remote Sens. 12 (5), 817. https://doi.org/10.3390/rs12050817 (2020).

    Google Scholar 

  87. Vu, D. T., Bruinsma, S., Bonvalot, S., Bui, L. K. & Balmino, G. Determination of the geopotential value on the permanent GNSS stations in Vietnam based on the geodetic boundary value problem approach. Geophys. J. Int. 226 (2), 1206–1219. https://doi.org/10.1093/gji/ggab166 (2021).

    Google Scholar 

  88. Permanent Service for Mean Sea Level (PSMSL). Permanent Service for Mean Sea Level – Tide Gauge Data: Hon Dau, (2025b). https://psmsl.org/data/obtaining/stations/841.php

  89. Bryant, S., Schumann, G., Apel, H., Kreibich, H. & Merz, B. Technical note: resolution enhancement of flood inundation grids. Hydrol. Earth Syst. Sci. 28 (3), 575–588. https://doi.org/10.5194/hess-28-575-2024 (2024).

    Google Scholar 

  90. Birol, F. et al. Understanding uncertainties in the satellite altimeter measurement of coastal sea level: insights from a round-robin analysis. Ocean. Sci. 21 (1), 133–150. https://doi.org/10.5194/os-21-133-2025 (2025).

    Google Scholar 

  91. Mulet, S. et al. The new CNES-CLS18 global mean dynamic topography. Ocean. Sci. 17 (3), 789–808. https://doi.org/10.5194/os-17-789-2021 (2021).

    Google Scholar 

  92. Aguilar, F. J., Aguilar, M. A., Agüera, F. & Sánchez, J. The accuracy of grid digital elevation models linearly constructed from scattered sample data. Int. J. Geogr. Inf. Sci. 20 (2), 169–192. https://doi.org/10.1080/13658810500399670 (2006).

    Google Scholar 

  93. Wessel, B. TanDEM-X ground segment–DEM products specification document. (2013).

  94. Rio, M. H., Mulet, S. & Picot, N. Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett. 41 (24), 8918–8925. https://doi.org/10.1002/2014GL061773 (2014).

    Google Scholar 

Download references

Acknowledgements

Philip S.J. Minderhoud received funding from the Netherlands Science Foundation (NWO) Drowning Deltas project (NWO-Veni-TTW-2022 No. 20231).

Author information

Authors and Affiliations

  1. Soil Geography and Landscape Group , Wageningen University & Research , NL-6708PB, Wageningen, Netherlands

    Katharina Seeger & Philip S. J. Minderhoud

  2. Institute of Geography , University of Cologne , 50923, Cologne, Germany

    Katharina Seeger

  3. Department of Civil Environmental and Architectural Engineering , University of Padova , Padova, Italy

    Katharina Seeger & Philip S. J. Minderhoud

  4. Department of Subsurface and Groundwater Systems , Deltares Research Institute , Utrecht, The Netherlands

    Philip S. J. Minderhoud

Authors
  1. Katharina Seeger
    View author publications

    Search author on:PubMed Google Scholar

  2. Philip S. J. Minderhoud
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.S. and P.S.J.M. jointly conceptualised this study. K.S. designed the methodology (updating the vertical datum of local elevation data, DEM assessment), performed the analyses, created the figures and wrote the original draft. P.S.J.M. acquired funding and supervised the investigation. Both authors managed project administration, assessed the results and reviewed and edited the manuscript.

Corresponding author

Correspondence to Katharina Seeger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeger, K., Minderhoud, P.S.J. Elevation uncertainties in the Mekong Delta quantified using a transferable approach. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38315-y

Download citation

  • Received: 24 September 2025

  • Accepted: 29 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38315-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Digital elevation model (DEM)
  • Land elevation change
  • Land subsidence
  • Relative sea-level rise
  • Satellite data
  • Vertical datum
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene