Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Computational prediction of grain features during friction stir processes through a mechanistic discontinuous dynamic recrystallization model
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

Computational prediction of grain features during friction stir processes through a mechanistic discontinuous dynamic recrystallization model

  • Prachi Sharma1,
  • Deepak Dhariwal2 &
  • Amit Arora1 

Scientific Reports , Article number:  (2026) Cite this article

  • 94 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Materials science

Abstract

The large amount of strain combined with high temperature during Friction Stir Welding and Processing (FSWP) results in dynamic recrystallization and grain growth. The final properties of the processed material depend on the recrystallized grain structure. The ability to predict recrystallized microstructural features would take the FSWP modeling efforts one step closer to estimating the final weld mechanical properties. Here we present a computational framework for microstructural feature prediction based on the Discontinuous Dynamic Recrystallization (DDRX) principle considering plastic deformation, nucleation, and growth. The computed strains, strain rates and temperatures from an existing Heat Transfer and Material Flow (HTMF) model are utilized as input parameters for the DDRX model. The microstructural features such as average grain size, dislocation density, Taylor’s factor, number of new grains formation and grain size distribution are predicted using the DDRX model. The grain size prediction is validated against experimentally measured grain size, demonstrating a remarkable 97% accuracy and the reliability of the DDRX model.

Similar content being viewed by others

Influence of deformation path on microstructure evolution during multi-step deformation of a high strength steel: experiments and FE analysis

Article Open access 29 November 2025

Friction stir welding parameter optimization for dissimilar AA2014 and AA5052 aluminium alloys

Article Open access 03 February 2026

The impact of severe plastic deformations obtained by hydrostatic extrusion on the machinability of ultrafine-grained Ti grade 2 intended for fasteners

Article Open access 28 September 2022

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Singh, A., Sharma, S. K. & Batish, A. Dynamic recrystallization during solid state friction stir welding/processing/additive manufacturing: mechanisms, microstructure evolution, characterization, modeling techniques and challenges. Crit. Rev. Solid State Mater. Sci. 50, 77–135. https://doi.org/10.1080/10408436.2024.2391333 (2024).

    Google Scholar 

  2. Heidarzadeh, A. et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater. Sci. 117, 100752. https://doi.org/10.1016/j.pmatsci.2020.100752 (2020).

    Google Scholar 

  3. Jata, K. V. & Semiatin, S. L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr. Mater. 43, 743–749. https://doi.org/10.1016/S1359-6462(00)00480-2 (2000).

    Google Scholar 

  4. Ma, Z. Y., Feng, A. H., Chen, D. L. & Shen, J. Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties. Crit. Rev. Solid State Mater. Sci. 43, 269–333. https://doi.org/10.1080/10408436.2017.1358145 (2018).

    Google Scholar 

  5. Sun, T. et al. Dynamic recrystallization mechanism, grain structure evolution, and mechanical behavior in friction stir welding of galvanized steel at different cooling rates. Int. J. Adv. Manuf. Technol. 132, 5521–5535. https://doi.org/10.1007/s00170-024-13573-0 (2024).

    Google Scholar 

  6. Yu, P., Wu, C. & Shi, L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Mater. 207, 116692. https://doi.org/10.1016/j.actamat.2021.116692 (2021).

    Google Scholar 

  7. Li, H. et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654. Mater. Des. 118, 207–217. https://doi.org/10.1016/j.matdes.2017.01.034 (2017).

    Google Scholar 

  8. Humphreys, J., Rohrer, G. S. & Rollett, A. Recrystallization and Related Annealing Phenomena (Elsevier, 2017). https://doi.org/10.1016/B978-0-08-098235-9.01001-6

  9. Mehdi, H., Mabuwa, S., Msomi, V. & Saxena, K. K. Influence of friction stir processing on the mechanical and microstructure characterization of single and double V-groove tungsten inert gas welded dissimilar aluminum joints. J. Mater. Eng. Perform. 32, 7858–7868. https://doi.org/10.1007/s11665-022-07659-7 (2023).

    Google Scholar 

  10. Mabuwa, S., Msomi, V., Mehdi, H. & Saxena, K. K. Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. J. Adhes. Sci. Technol. 37, 2484–2502. https://doi.org/10.1080/01694243.2022.2142366 (2023).

    Google Scholar 

  11. Mehdi, H. & Mishra, R. S. Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv. Ind. Manuf. Eng. 3, 100062. https://doi.org/10.1016/j.aime.2021.100062 (2021).

    Google Scholar 

  12. Mehdi, H. & Mishra, R. S. Modification of microstructure and mechanical properties of AA6082/ZrB₂ processed by multipass friction stir processing. J. Mater. Eng. Perform. 32, 285–295. https://doi.org/10.1007/s11665-022-07080-0 (2023).

    Google Scholar 

  13. Liu, X. C., Sun, Y. F., Nagira, T., Ushioda, K. & Fujii, H. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. J. Mater. Sci. Technol. 35, 1412–1421. https://doi.org/10.1016/j.jmst.2019.01.018 (2019).

    Google Scholar 

  14. Baker, B. W. et al. Processing–microstructure relationships in friction stir welding of MA956 oxide dispersion strengthened steel. Metall. Mater. Trans. E. 1, 318–330. https://doi.org/10.1007/s40553-014-0033-6 (2014).

    Google Scholar 

  15. Etter, A. L., Baudin, T., Fredj, N. & Penelle, R. Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater. Sci. Eng. A. 445–446, 94–99. https://doi.org/10.1016/j.msea.2006.09.036 (2007).

    Google Scholar 

  16. Mironov, S., Inagaki, K., Sato, Y. S. & Kokawa, H. Microstructural evolution of pure copper during friction-stir welding. Philos. Mag. 95, 367–381. https://doi.org/10.1080/14786435.2015.1006293 (2015).

    Google Scholar 

  17. Wang, W., Hu, Y., Wu, T., Zhao, D. & Zhao, H. Effect of rotation speed on microstructure and mechanical properties of friction-stir-welded 2205 duplex stainless steel. Adv. Mater. Sci. Eng. 2020 (5176536). https://doi.org/10.1155/2020/5176536 (2020).

  18. Nandan, R., Roy, G. G. & DebRoy, T. Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall. Mater. Trans. A. 37, 1247–1259. https://doi.org/10.1007/s11661-006-1076-9 (2006).

    Google Scholar 

  19. Arora, A., Zhang, Z., De, A. & DebRoy, T. Strains and strain rates during friction stir welding. Scr. Mater. 61, 863–866. https://doi.org/10.1016/j.scriptamat.2009.07.015 (2009).

    Google Scholar 

  20. Arora, A., Nandan, R., Reynolds, A. P. & DebRoy, T. Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr. Mater. 60, 13–16. https://doi.org/10.1016/j.scriptamat.2008.08.015 (2009).

    Google Scholar 

  21. Mehta, M., Arora, A., De, A. & DebRoy, T. Tool geometry for friction stir welding—optimum shoulder diameter. Metall. Mater. Trans. A. 42, 2716–2722. https://doi.org/10.1007/s11661-011-0672-5 (2011).

    Google Scholar 

  22. Saha, R. & Biswas, P. Temperature and stress evaluation during friction stir welding of inconel 718 alloy using finite element numerical simulation. J. Mater. Eng. Perform. 31, 2002–2011. https://doi.org/10.1007/s11665-021-06313-y (2022).

    Google Scholar 

  23. Mukherjee, T., Zhang, W. & DebRoy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 126, 360–372. https://doi.org/10.1016/j.commatsci.2016.10.003 (2017).

    Google Scholar 

  24. Sahlot, P. & Arora, A. Numerical model for prediction of tool wear and worn-out pin profile during friction stir welding. Wear 408–409, 96–107. https://doi.org/10.1016/j.wear.2018.05.007 (2018).

    Google Scholar 

  25. Fratini, L., Buffa, G. & Palmeri, D. Using a neural network for predicting the average grain size in friction stir welding processes. Comput. Struct. 87, 1166–1174. https://doi.org/10.1016/j.compstruc.2009.04.008 (2009).

    Google Scholar 

  26. Rahimzadeh Ilkhichi, A., Soufi, R., Hussain, G., Vatankhah Barenji, R. & Heidarzadeh, A. Establishing mathematical models to predict grain size and hardness of the friction stir-welded AA7020 aluminum alloy joints. Metall. Mater. Trans. B. 46, 357–365. https://doi.org/10.1007/s11663-014-0205-x (2015).

    Google Scholar 

  27. Fratini, L. & Buffa, G. CDRX modelling in friction stir welding of aluminium alloys. Int. J. Mach. Tools Manuf. 45, 1188–1194. https://doi.org/10.1016/j.ijmachtools.2004.12.001 (2005).

    Google Scholar 

  28. Heidarzadeh, A., Jabbari, M. & Esmaily, M. Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int. J. Adv. Manuf. Technol. 77, 1819–1829. https://doi.org/10.1007/s00170-014-6543-7 (2015).

    Google Scholar 

  29. Bocchi, S. & Negozio, M. Experimental investigation and finite element simulation of the microstructural evolution in AA6082 friction stir welded joints. J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-025-10752-2 (2025).

    Google Scholar 

  30. Dialami, N., Cervera, M. & Chiumenti, M. Numerical modelling of microstructure evolution in friction stir welding (FSW). Metals 8, 183. https://doi.org/10.3390/met8030183 (2018).

    Google Scholar 

  31. Zhang, Z. H., Li, W. Y., Li, J. L. & Chao, Y. J. Effective predictions of ultimate tensile strength, peak temperature and grain size of friction stir welded AA2024 alloy joints. Int. J. Adv. Manuf. Technol. 73, 1213–1218. https://doi.org/10.1007/s00170-014-5926-0 (2014).

    Google Scholar 

  32. Ammouri, A. H., Kridli, G., Ayoub, G. & Hamade, R. F. Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J. Mater. Process. Technol. 222, 301–306. https://doi.org/10.1016/j.jmatprotec.2015.02.037 (2015).

    Google Scholar 

  33. Gao, Z., Feng, J., Wang, Z., Niu, J. & Sommitsch, C. Dislocation density-based modeling of dynamic recrystallized microstructure and process in friction stir spot welding of AA6082. Metals 9, 672. https://doi.org/10.3390/met9060672 (2019).

    Google Scholar 

  34. Gourdet, S. & Montheillet, F. A model of continuous dynamic recrystallization. Acta Mater. 51, 2685–2699. https://doi.org/10.1016/S1359-6454(03)00078-8 (2003).

    Google Scholar 

  35. Yang, C., Wu, C. & Shi, L. Phase-field modelling of dynamic recrystallization process during friction stir welding of aluminium alloys. Sci. Technol. Weld. Join. 25, 345–358. https://doi.org/10.1080/13621718.2019.1706261 (2020).

    Google Scholar 

  36. Asadi, P., Besharati Givi, M. K. & Akbari, M. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int. J. Adv. Manuf. Technol. 83, 301–311. https://doi.org/10.1007/s00170-015-7595-z (2016).

    Google Scholar 

  37. He, F., Wu, C. & Shi, L. Multiphase field simulation of dynamic recrystallization during friction stir welding of AZ31 magnesium alloy. J. Mater. Sci. 57, 20764–20779. https://doi.org/10.1007/s10853-022-07891-5 (2022).

    Google Scholar 

  38. Saluja, R. S., Narayanan, G., Das, S. & R. & Cellular automata finite element (CAFE) model to predict the forming of friction stir welded blanks. Comput. Mater. Sci. 58, 87–100. https://doi.org/10.1016/j.commatsci.2012.01.036 (2012).

    Google Scholar 

  39. Valvi, S. R., Krishnan, A., Das, S. & Ganesh Narayanan, R. Prediction of microstructural features and forming of friction stir welded sheets using cellular automata finite element (CAFE) approach. Int. J. Mater. Form. 9, 115–129. https://doi.org/10.1007/s12289-015-1216-0 (2016).

    Google Scholar 

  40. Grujicic, M., Ramaswami, S., Snipes, J. S., Avuthu, V. & Zhang, Z. Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method. J. Mater. Eng. Perform. 24, 3471–3486. https://doi.org/10.1007/s11665-015-1635-6 (2015).

    Google Scholar 

  41. Zhang, Z., Wu, Q., Grujicic, M. & Wan, Z. Y. Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6. J. Mater. Sci. 51, 1882–1895. https://doi.org/10.1007/s10853-015-9495-x (2016).

    Google Scholar 

  42. Singh, A. K., Sahlot, P., Paliwal, M. & Arora, A. Heat transfer modeling of dissimilar FSW of al 6061/AZ31 using experimentally measured thermo-physical properties. Int. J. Adv. Manuf. Technol. 105, 771–783. https://doi.org/10.1007/s00170-019-04276-y (2019).

    Google Scholar 

  43. Nandan, R., Lienert, T. J. & DebRoy, T. Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy. Int. J. Mater. Res. 99, 434–444. https://doi.org/10.3139/146.101655 (2008).

    Google Scholar 

  44. Sahlot, P., Singh, A. K., Badheka, V. J. & Arora, A. Friction stir welding of copper: numerical modeling and validation. Trans. Indian Inst. Met. 72, 1339–1347. https://doi.org/10.1007/s12666-019-01629-9 (2019).

    Google Scholar 

  45. Nandan, R., Roy, G. G., Lienert, T. J. & DebRoy, T. Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 55, 883–895. https://doi.org/10.1016/j.actamat.2006.09.009 (2007).

    Google Scholar 

  46. Cram, D. G., Zurob, H. S., Bréchet, Y. J. M. & Hutchinson, C. R. Modelling discontinuous dynamic recrystallization using a physically-based model for nucleation. Mater. Sci. Forum. 715–716, 492–497. https://doi.org/10.4028/www.scientific.net/MSF.715-716.492 (2012).

    Google Scholar 

  47. Bouaziz, O. & Buessler, P. Iso-work increment assumption for heterogeneous material behaviour modelling. Adv. Eng. Mater. 6, 79–83. https://doi.org/10.1002/adem.200300524 (2004).

    Google Scholar 

  48. Cram, D. G., Zurob, H. S., Bréchet, Y. J. M. & Hutchinson, C. R. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation. Acta Mater. 57, 5218–5228. https://doi.org/10.1016/j.actamat.2009.07.024 (2009).

    Google Scholar 

  49. Simon, N. J., Drexler, E. S. & Reed, R. P. Properties of Copper and Copper Alloys at Cryogenic Temperatures, NIST Monograph 177 (National Institute of Standards and Technology, Gaithersburg, MD); (1992). https://doi.org/10.6028/NIST.MONO.177

  50. Carreker, R. P. Jr. & Hibbard, W. R. Jr. Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall. 1, 654–663. https://doi.org/10.1016/0001-6160(53)90022-4 (1953).

    Google Scholar 

  51. Follansbee, P. S. Application of the mechanical threshold stress model to large strain processing. Mater. Sci. Appl. 13, 300–316. https://doi.org/10.4236/msa.2022.135016 (2022).

    Google Scholar 

  52. Khodaverdizadeh, H., Mahmoudi, A., Heidarzadeh, A. & Nazari, E. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater. Des. 35, 330–334. https://doi.org/10.1016/j.matdes.2011.09.058 (2012).

    Google Scholar 

  53. E. Bailey, J. & B. Hirsch, P. The recrystallization process in some polycrystalline metals. Proc. R Soc. Lond. Math. Phys. Sci. 267, 11–30. https://doi.org/10.1098/rspa.1962.0080 (1962).

    Google Scholar 

  54. Mironov, S., Inagaki, K., Sato, Y. S. & Kokawa, H. Development of grain structure during friction-stir welding of Cu–30Zn brass. Philos. Mag. 94, 3137–3148. https://doi.org/10.1080/14786435.2014.951712 (2014).

    Google Scholar 

  55. Cram, D. G. Dynamic Recrystallization of Pure Copper and Copper-Tin Alloys. Thesis, Monash University; (2017). https://doi.org/10.4225/03/58a67eff49d45

  56. Raj, S. V. & Pharr, G. M. A compilation and analysis of data for the stress dependence of the subgrain size. Mater. Sci. Eng. A. 81, 217–237. https://doi.org/10.1016/0025-5416(86)90265-X (1986).

    Google Scholar 

  57. Spencer, C. J., Yakymchuk, C. & Ghaznavi, M. Visualising data distributions with kernel density Estimation and reduced chi-squared statistic. Geosci. Front. 8, 1247–1252. https://doi.org/10.1016/j.gsf.2017.05.002 (2017).

    Google Scholar 

  58. Węglarczyk, S. Kernel density Estimation and its application. ITM Web Conf. 23, 00037. https://doi.org/10.1051/itmconf/20182300037 (2018).

    Google Scholar 

  59. Lopez-Sanchez, M. A. & Llana-Fúnez, S. An evaluation of different measures of dynamically recrystallized grain size for paleopiezometry or paleowattometry studies. Solid Earth. 6, 475–495. https://doi.org/10.5194/se-6-475-2015 (2015).

    Google Scholar 

  60. Kumar, A., Kumar, V., Sharma, N. K. & Saini, N. Crystallographic texture evolution during friction stir processing of AA7075 alloy. Mater. Today Commun. 39, 108984. https://doi.org/10.1016/j.mtcomm.2024.108984 (2024).

    Google Scholar 

  61. Wang, Y., Fu, R., Jing, L., Li, Y. & Sang, D. Grain refinement and nanostructure formation in pure copper during cryogenic friction stir processing. Mater. Sci. Eng. A. 703, 470–476. https://doi.org/10.1016/j.msea.2017.07.090 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank DST FIST (SR/FST/ET-I/2017/18) grant for the development of an analytical FESEM equipped with an EBSD facility and the Central Instrumentation Facility at the Indian Institute of Technology Gandhinagar for providing the facility to perform EBSD Analysis. The authors would also like to extend gratitude to Dr. Vishvesh Badheka for providing the Friction Stir Welding facility at Pandit Deendayal Energy University to perform FSP trials.

Funding

The work was financially supported by the Prime Minister’s Research Fellowship.

Author information

Authors and Affiliations

  1. Advanced Materials Processing Research Group, Materials Engineering Department, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gujarat, India

    Prachi Sharma & Amit Arora

  2. Material Science and Engineering , Virginia Tech , 24060, Virginia, US

    Deepak Dhariwal

Authors
  1. Prachi Sharma
    View author publications

    Search author on:PubMed Google Scholar

  2. Deepak Dhariwal
    View author publications

    Search author on:PubMed Google Scholar

  3. Amit Arora
    View author publications

    Search author on:PubMed Google Scholar

Contributions

P. S. worked on developing the model, validation, conducted the experiments for validation, analysis and writing the original draft. D. D. worked on developing the model and results analysis. A. A. worked on conceptualizing, manuscript revision and provided supervision.

Corresponding author

Correspondence to Amit Arora.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Dhariwal, D. & Arora, A. Computational prediction of grain features during friction stir processes through a mechanistic discontinuous dynamic recrystallization model. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38396-9

Download citation

  • Received: 04 November 2025

  • Accepted: 29 January 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38396-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Discontinuous dynamic recrystallization
  • Copper
  • Heat transfer and material flow model
  • Average grain size
  • EBSD
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing