Abstract
The large amount of strain combined with high temperature during Friction Stir Welding and Processing (FSWP) results in dynamic recrystallization and grain growth. The final properties of the processed material depend on the recrystallized grain structure. The ability to predict recrystallized microstructural features would take the FSWP modeling efforts one step closer to estimating the final weld mechanical properties. Here we present a computational framework for microstructural feature prediction based on the Discontinuous Dynamic Recrystallization (DDRX) principle considering plastic deformation, nucleation, and growth. The computed strains, strain rates and temperatures from an existing Heat Transfer and Material Flow (HTMF) model are utilized as input parameters for the DDRX model. The microstructural features such as average grain size, dislocation density, Taylor’s factor, number of new grains formation and grain size distribution are predicted using the DDRX model. The grain size prediction is validated against experimentally measured grain size, demonstrating a remarkable 97% accuracy and the reliability of the DDRX model.
Similar content being viewed by others
Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Singh, A., Sharma, S. K. & Batish, A. Dynamic recrystallization during solid state friction stir welding/processing/additive manufacturing: mechanisms, microstructure evolution, characterization, modeling techniques and challenges. Crit. Rev. Solid State Mater. Sci. 50, 77–135. https://doi.org/10.1080/10408436.2024.2391333 (2024).
Heidarzadeh, A. et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater. Sci. 117, 100752. https://doi.org/10.1016/j.pmatsci.2020.100752 (2020).
Jata, K. V. & Semiatin, S. L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr. Mater. 43, 743–749. https://doi.org/10.1016/S1359-6462(00)00480-2 (2000).
Ma, Z. Y., Feng, A. H., Chen, D. L. & Shen, J. Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties. Crit. Rev. Solid State Mater. Sci. 43, 269–333. https://doi.org/10.1080/10408436.2017.1358145 (2018).
Sun, T. et al. Dynamic recrystallization mechanism, grain structure evolution, and mechanical behavior in friction stir welding of galvanized steel at different cooling rates. Int. J. Adv. Manuf. Technol. 132, 5521–5535. https://doi.org/10.1007/s00170-024-13573-0 (2024).
Yu, P., Wu, C. & Shi, L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Mater. 207, 116692. https://doi.org/10.1016/j.actamat.2021.116692 (2021).
Li, H. et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654. Mater. Des. 118, 207–217. https://doi.org/10.1016/j.matdes.2017.01.034 (2017).
Humphreys, J., Rohrer, G. S. & Rollett, A. Recrystallization and Related Annealing Phenomena (Elsevier, 2017). https://doi.org/10.1016/B978-0-08-098235-9.01001-6
Mehdi, H., Mabuwa, S., Msomi, V. & Saxena, K. K. Influence of friction stir processing on the mechanical and microstructure characterization of single and double V-groove tungsten inert gas welded dissimilar aluminum joints. J. Mater. Eng. Perform. 32, 7858–7868. https://doi.org/10.1007/s11665-022-07659-7 (2023).
Mabuwa, S., Msomi, V., Mehdi, H. & Saxena, K. K. Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. J. Adhes. Sci. Technol. 37, 2484–2502. https://doi.org/10.1080/01694243.2022.2142366 (2023).
Mehdi, H. & Mishra, R. S. Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv. Ind. Manuf. Eng. 3, 100062. https://doi.org/10.1016/j.aime.2021.100062 (2021).
Mehdi, H. & Mishra, R. S. Modification of microstructure and mechanical properties of AA6082/ZrB₂ processed by multipass friction stir processing. J. Mater. Eng. Perform. 32, 285–295. https://doi.org/10.1007/s11665-022-07080-0 (2023).
Liu, X. C., Sun, Y. F., Nagira, T., Ushioda, K. & Fujii, H. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. J. Mater. Sci. Technol. 35, 1412–1421. https://doi.org/10.1016/j.jmst.2019.01.018 (2019).
Baker, B. W. et al. Processing–microstructure relationships in friction stir welding of MA956 oxide dispersion strengthened steel. Metall. Mater. Trans. E. 1, 318–330. https://doi.org/10.1007/s40553-014-0033-6 (2014).
Etter, A. L., Baudin, T., Fredj, N. & Penelle, R. Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater. Sci. Eng. A. 445–446, 94–99. https://doi.org/10.1016/j.msea.2006.09.036 (2007).
Mironov, S., Inagaki, K., Sato, Y. S. & Kokawa, H. Microstructural evolution of pure copper during friction-stir welding. Philos. Mag. 95, 367–381. https://doi.org/10.1080/14786435.2015.1006293 (2015).
Wang, W., Hu, Y., Wu, T., Zhao, D. & Zhao, H. Effect of rotation speed on microstructure and mechanical properties of friction-stir-welded 2205 duplex stainless steel. Adv. Mater. Sci. Eng. 2020 (5176536). https://doi.org/10.1155/2020/5176536 (2020).
Nandan, R., Roy, G. G. & DebRoy, T. Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding. Metall. Mater. Trans. A. 37, 1247–1259. https://doi.org/10.1007/s11661-006-1076-9 (2006).
Arora, A., Zhang, Z., De, A. & DebRoy, T. Strains and strain rates during friction stir welding. Scr. Mater. 61, 863–866. https://doi.org/10.1016/j.scriptamat.2009.07.015 (2009).
Arora, A., Nandan, R., Reynolds, A. P. & DebRoy, T. Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr. Mater. 60, 13–16. https://doi.org/10.1016/j.scriptamat.2008.08.015 (2009).
Mehta, M., Arora, A., De, A. & DebRoy, T. Tool geometry for friction stir welding—optimum shoulder diameter. Metall. Mater. Trans. A. 42, 2716–2722. https://doi.org/10.1007/s11661-011-0672-5 (2011).
Saha, R. & Biswas, P. Temperature and stress evaluation during friction stir welding of inconel 718 alloy using finite element numerical simulation. J. Mater. Eng. Perform. 31, 2002–2011. https://doi.org/10.1007/s11665-021-06313-y (2022).
Mukherjee, T., Zhang, W. & DebRoy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 126, 360–372. https://doi.org/10.1016/j.commatsci.2016.10.003 (2017).
Sahlot, P. & Arora, A. Numerical model for prediction of tool wear and worn-out pin profile during friction stir welding. Wear 408–409, 96–107. https://doi.org/10.1016/j.wear.2018.05.007 (2018).
Fratini, L., Buffa, G. & Palmeri, D. Using a neural network for predicting the average grain size in friction stir welding processes. Comput. Struct. 87, 1166–1174. https://doi.org/10.1016/j.compstruc.2009.04.008 (2009).
Rahimzadeh Ilkhichi, A., Soufi, R., Hussain, G., Vatankhah Barenji, R. & Heidarzadeh, A. Establishing mathematical models to predict grain size and hardness of the friction stir-welded AA7020 aluminum alloy joints. Metall. Mater. Trans. B. 46, 357–365. https://doi.org/10.1007/s11663-014-0205-x (2015).
Fratini, L. & Buffa, G. CDRX modelling in friction stir welding of aluminium alloys. Int. J. Mach. Tools Manuf. 45, 1188–1194. https://doi.org/10.1016/j.ijmachtools.2004.12.001 (2005).
Heidarzadeh, A., Jabbari, M. & Esmaily, M. Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int. J. Adv. Manuf. Technol. 77, 1819–1829. https://doi.org/10.1007/s00170-014-6543-7 (2015).
Bocchi, S. & Negozio, M. Experimental investigation and finite element simulation of the microstructural evolution in AA6082 friction stir welded joints. J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-025-10752-2 (2025).
Dialami, N., Cervera, M. & Chiumenti, M. Numerical modelling of microstructure evolution in friction stir welding (FSW). Metals 8, 183. https://doi.org/10.3390/met8030183 (2018).
Zhang, Z. H., Li, W. Y., Li, J. L. & Chao, Y. J. Effective predictions of ultimate tensile strength, peak temperature and grain size of friction stir welded AA2024 alloy joints. Int. J. Adv. Manuf. Technol. 73, 1213–1218. https://doi.org/10.1007/s00170-014-5926-0 (2014).
Ammouri, A. H., Kridli, G., Ayoub, G. & Hamade, R. F. Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing. J. Mater. Process. Technol. 222, 301–306. https://doi.org/10.1016/j.jmatprotec.2015.02.037 (2015).
Gao, Z., Feng, J., Wang, Z., Niu, J. & Sommitsch, C. Dislocation density-based modeling of dynamic recrystallized microstructure and process in friction stir spot welding of AA6082. Metals 9, 672. https://doi.org/10.3390/met9060672 (2019).
Gourdet, S. & Montheillet, F. A model of continuous dynamic recrystallization. Acta Mater. 51, 2685–2699. https://doi.org/10.1016/S1359-6454(03)00078-8 (2003).
Yang, C., Wu, C. & Shi, L. Phase-field modelling of dynamic recrystallization process during friction stir welding of aluminium alloys. Sci. Technol. Weld. Join. 25, 345–358. https://doi.org/10.1080/13621718.2019.1706261 (2020).
Asadi, P., Besharati Givi, M. K. & Akbari, M. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int. J. Adv. Manuf. Technol. 83, 301–311. https://doi.org/10.1007/s00170-015-7595-z (2016).
He, F., Wu, C. & Shi, L. Multiphase field simulation of dynamic recrystallization during friction stir welding of AZ31 magnesium alloy. J. Mater. Sci. 57, 20764–20779. https://doi.org/10.1007/s10853-022-07891-5 (2022).
Saluja, R. S., Narayanan, G., Das, S. & R. & Cellular automata finite element (CAFE) model to predict the forming of friction stir welded blanks. Comput. Mater. Sci. 58, 87–100. https://doi.org/10.1016/j.commatsci.2012.01.036 (2012).
Valvi, S. R., Krishnan, A., Das, S. & Ganesh Narayanan, R. Prediction of microstructural features and forming of friction stir welded sheets using cellular automata finite element (CAFE) approach. Int. J. Mater. Form. 9, 115–129. https://doi.org/10.1007/s12289-015-1216-0 (2016).
Grujicic, M., Ramaswami, S., Snipes, J. S., Avuthu, V. & Zhang, Z. Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method. J. Mater. Eng. Perform. 24, 3471–3486. https://doi.org/10.1007/s11665-015-1635-6 (2015).
Zhang, Z., Wu, Q., Grujicic, M. & Wan, Z. Y. Monte Carlo simulation of grain growth and welding zones in friction stir welding of AA6082-T6. J. Mater. Sci. 51, 1882–1895. https://doi.org/10.1007/s10853-015-9495-x (2016).
Singh, A. K., Sahlot, P., Paliwal, M. & Arora, A. Heat transfer modeling of dissimilar FSW of al 6061/AZ31 using experimentally measured thermo-physical properties. Int. J. Adv. Manuf. Technol. 105, 771–783. https://doi.org/10.1007/s00170-019-04276-y (2019).
Nandan, R., Lienert, T. J. & DebRoy, T. Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy. Int. J. Mater. Res. 99, 434–444. https://doi.org/10.3139/146.101655 (2008).
Sahlot, P., Singh, A. K., Badheka, V. J. & Arora, A. Friction stir welding of copper: numerical modeling and validation. Trans. Indian Inst. Met. 72, 1339–1347. https://doi.org/10.1007/s12666-019-01629-9 (2019).
Nandan, R., Roy, G. G., Lienert, T. J. & DebRoy, T. Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 55, 883–895. https://doi.org/10.1016/j.actamat.2006.09.009 (2007).
Cram, D. G., Zurob, H. S., Bréchet, Y. J. M. & Hutchinson, C. R. Modelling discontinuous dynamic recrystallization using a physically-based model for nucleation. Mater. Sci. Forum. 715–716, 492–497. https://doi.org/10.4028/www.scientific.net/MSF.715-716.492 (2012).
Bouaziz, O. & Buessler, P. Iso-work increment assumption for heterogeneous material behaviour modelling. Adv. Eng. Mater. 6, 79–83. https://doi.org/10.1002/adem.200300524 (2004).
Cram, D. G., Zurob, H. S., Bréchet, Y. J. M. & Hutchinson, C. R. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation. Acta Mater. 57, 5218–5228. https://doi.org/10.1016/j.actamat.2009.07.024 (2009).
Simon, N. J., Drexler, E. S. & Reed, R. P. Properties of Copper and Copper Alloys at Cryogenic Temperatures, NIST Monograph 177 (National Institute of Standards and Technology, Gaithersburg, MD); (1992). https://doi.org/10.6028/NIST.MONO.177
Carreker, R. P. Jr. & Hibbard, W. R. Jr. Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size. Acta Metall. 1, 654–663. https://doi.org/10.1016/0001-6160(53)90022-4 (1953).
Follansbee, P. S. Application of the mechanical threshold stress model to large strain processing. Mater. Sci. Appl. 13, 300–316. https://doi.org/10.4236/msa.2022.135016 (2022).
Khodaverdizadeh, H., Mahmoudi, A., Heidarzadeh, A. & Nazari, E. Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater. Des. 35, 330–334. https://doi.org/10.1016/j.matdes.2011.09.058 (2012).
E. Bailey, J. & B. Hirsch, P. The recrystallization process in some polycrystalline metals. Proc. R Soc. Lond. Math. Phys. Sci. 267, 11–30. https://doi.org/10.1098/rspa.1962.0080 (1962).
Mironov, S., Inagaki, K., Sato, Y. S. & Kokawa, H. Development of grain structure during friction-stir welding of Cu–30Zn brass. Philos. Mag. 94, 3137–3148. https://doi.org/10.1080/14786435.2014.951712 (2014).
Cram, D. G. Dynamic Recrystallization of Pure Copper and Copper-Tin Alloys. Thesis, Monash University; (2017). https://doi.org/10.4225/03/58a67eff49d45
Raj, S. V. & Pharr, G. M. A compilation and analysis of data for the stress dependence of the subgrain size. Mater. Sci. Eng. A. 81, 217–237. https://doi.org/10.1016/0025-5416(86)90265-X (1986).
Spencer, C. J., Yakymchuk, C. & Ghaznavi, M. Visualising data distributions with kernel density Estimation and reduced chi-squared statistic. Geosci. Front. 8, 1247–1252. https://doi.org/10.1016/j.gsf.2017.05.002 (2017).
Węglarczyk, S. Kernel density Estimation and its application. ITM Web Conf. 23, 00037. https://doi.org/10.1051/itmconf/20182300037 (2018).
Lopez-Sanchez, M. A. & Llana-Fúnez, S. An evaluation of different measures of dynamically recrystallized grain size for paleopiezometry or paleowattometry studies. Solid Earth. 6, 475–495. https://doi.org/10.5194/se-6-475-2015 (2015).
Kumar, A., Kumar, V., Sharma, N. K. & Saini, N. Crystallographic texture evolution during friction stir processing of AA7075 alloy. Mater. Today Commun. 39, 108984. https://doi.org/10.1016/j.mtcomm.2024.108984 (2024).
Wang, Y., Fu, R., Jing, L., Li, Y. & Sang, D. Grain refinement and nanostructure formation in pure copper during cryogenic friction stir processing. Mater. Sci. Eng. A. 703, 470–476. https://doi.org/10.1016/j.msea.2017.07.090 (2017).
Acknowledgements
The authors would like to thank DST FIST (SR/FST/ET-I/2017/18) grant for the development of an analytical FESEM equipped with an EBSD facility and the Central Instrumentation Facility at the Indian Institute of Technology Gandhinagar for providing the facility to perform EBSD Analysis. The authors would also like to extend gratitude to Dr. Vishvesh Badheka for providing the Friction Stir Welding facility at Pandit Deendayal Energy University to perform FSP trials.
Funding
The work was financially supported by the Prime Minister’s Research Fellowship.
Author information
Authors and Affiliations
Contributions
P. S. worked on developing the model, validation, conducted the experiments for validation, analysis and writing the original draft. D. D. worked on developing the model and results analysis. A. A. worked on conceptualizing, manuscript revision and provided supervision.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Sharma, P., Dhariwal, D. & Arora, A. Computational prediction of grain features during friction stir processes through a mechanistic discontinuous dynamic recrystallization model. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38396-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38396-9


