Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Mesoporous silicon microparticles enhance antiviral immunity and memory responses against SARS-CoV-2
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Mesoporous silicon microparticles enhance antiviral immunity and memory responses against SARS-CoV-2

  • Ana López-Gómez1,2,
  • Irene Real-Arévalo2,3,
  • Elsa Mayol-Hornero1,2,
  • Jana Ausio Cendra1,
  • Diego Laxalde-Fernández4,
  • Pablo Nogales-Altozano6,
  • Benigno Rivas-Pardo2,
  • Beatriz Amorós-Pérez2,3,
  • Beatriz Martín-Adrados2,
  • Ignacio Juárez2,
  • Álvaro Martínez-Del-Pozo4,
  • Raúl J. Martín-Palma5,
  • Noemí Sevilla6,
  • Eduardo Martínez-Naves2 na1 nAff7 &
  • …
  • Manuel Gómez del Moral1 na1 nAff7 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biotechnology
  • Immunology
  • Microbiology

Abstract

Silica-based materials have attracted considerable interest as vaccine adjuvants due to their ability to potentiate immune responses. In this study, we evaluated the immunogenicity and protective efficacy of heteromorphous mesoporous silicon microparticles (MSMPs) as an adjuvant in the context of SARS-CoV-2 vaccination. MSMPs conjugated with the S1 subunit of the spike protein (MSMPs-S1) elicited a robust and sustained humoral immune response in BALB/c mice, comparable to that induced by aluminum-based adjuvants. Following a booster dose, MSMPs-S1 significantly increased IgG2a titers and neutralizing antibody levels, surpassing those observed with Al(OH)₃-based formulations. In addition, MSMPs-S1 enhanced cellular immunity, as reflected by higher IFN-γ production in T cells relative to the aluminum-adjuvanted group. In k18-hACE2 transgenic mice, vaccination with MSMPs-S1 conferred protection against a lethal SARS-CoV-2 challenge, resulting in marked reductions in viral loads in both lung and brain tissues. In vitro, stimulation of human peripheral blood mononuclear cells (PBMCs) with MSMPs-S1 increased IFN-γ production in T cells, particularly in the presence of dendritic cells. Collectively, these findings support the potential of MSMPs as an effective adjuvant capable of promoting both humoral and cellular immunity, with relevance for the development of vaccines targeting emerging viral pathogens.

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Verma, S. K. et al. New-age vaccine adjuvants, their development, and future perspective. Front. Immunol. 14, 1043109. https://doi.org/10.3389/fimmu.2023.1043109 (2023).

    Google Scholar 

  2. Pulendran, B., Arunachalam, P. S. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants., Nat. Rev. Drug Discov., 20 (6), 454–475 (2021). https://doi.org/10.1038/s41573-021-00163-y

  3. Audran, R. et al. Mar., Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro., Vaccine, 21(11–12), 1250–1255 (2003). https://doi.org/10.1016/s0264-410x(02)00521-2

  4. Langer, R., Cleland, J. L. & Hanes, J. New advances in microsphere-based single-dose vaccines., Adv. Drug Deliv. Rev., 28(1), 97–119 (1997). https://doi.org/10.1016/s0169-409x(97)00053-7

  5. Jiménez-Periáñez, A. et al. Mesoporous silicon microparticles enhance MHC class i cross-antigen presentation by human dendritic cells. Clin. Dev. Immunol. 2013 https://doi.org/10.1155/2013/362163 (2013).

  6. Fiolet, T., Kherabi, Y., MacDonald, C. J., Ghosn, J. & Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review., Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis., 28(2), 202–221 (2022). https://doi.org/10.1016/j.cmi.2021.10.005

  7. Doria-Rose, N. et al. Jun., Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19., N. Engl. J. Med., 384(23), 2259–2261 (2021). (United States) https://doi.org/10.1056/NEJMc2103916

  8. Barouch, D. H. et al. Sep., Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination., N. Engl. J. Med., 385(10), 951–953 (2021). (United States) https://doi.org/10.1056/NEJMc2108829

  9. Yang, L. T. et al. Aug., Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients., Clin. Immunol., 120(2), 171–178 (2006). https://doi.org/10.1016/j.clim.2006.05.002

  10. Enjuanes, L. et al. Molecular basis of coronavirus virulence and vaccine development. Adv. Virus Res. 96, 245–286. https://doi.org/10.1016/bs.aivir.2016.08.003 (2016).

    Google Scholar 

  11. Channappanavar, R., Zhao, J. & Perlman, S. T cell-mediated immune response to respiratory coronaviruses. Immunol. Res. 59, 1–3. https://doi.org/10.1007/s12026-014-8534-z (2014).

    Google Scholar 

  12. López-Gomez, A., Real-Arévalo, I., Martín-Palma, R., Martínez-Naves, E. & Del Moral, M. G. Manufacture of mesoporous silicon microparticles (MSMPs) as adjuvants for vaccine delivery. Methods Mol. Biol. 2673, 123–130. https://doi.org/10.1007/978-1-0716-3239-0_8 (2023).

    Google Scholar 

  13. Alcolea, P. J. et al. Non-replicative antibiotic resistance-free DNA vaccine encoding S and N proteins induces full protection in mice against SARS-CoV-2. Front. Immunol. 13, 1023255. https://doi.org/10.3389/fimmu.2022.1023255 (2022).

    Google Scholar 

  14. Navarro-Tovar, G., Rocha-García, D., Wong-Arce, A., Palestino, G. & Rosales-Mendoza, S. Mesoporous silicon particles favor the induction of long-lived humoral responses in mice to a peptide-based vaccine. Mater. (Basel). 11 (7). https://doi.org/10.3390/ma11071083 (2018).

  15. Castillo, R. R. et al. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update., Expert Opin. Drug Deliv., 16(4), 415–439 (2019). https://doi.org/10.1080/17425247.2019.1598375

  16. Abbaraju, P. L. et al. Asymmetric Silica Nanoparticles with Tunable Head-Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. J. Am. Chem. Soc. 139, 6321–6328. https://doi.org/10.1021/jacs.6b12622 (2017).

    Google Scholar 

  17. Yan, J. et al. Porous silicon and silica carriers for delivery of peptide therapeutics., Drug Deliv. Transl. Res., 14(12), 3549–3567 (2024). https://doi.org/10.1007/s13346-024-01609-7

  18. Abbaraju, P. L. et al. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses., Chem. Commun. (Camb)., 54(16), 2020–2023 (2018). https://doi.org/10.1039/c8cc00327k

  19. Janeway, C. A. J. Approaching the asymptote? Evolution and revolution in immunology., Cold Spring Harb. Symp. Quant. Biol., 54(1), 1–13 (1989). https://doi.org/10.1101/sqb.1989.054.01.003

  20. Liu, Z. et al. Size effect of mesoporous silica nanoparticles on regulating the immune effect of oral influenza split vaccine. Colloids Surf. B Biointerfaces 238, 113920. https://doi.org/10.1016/j.colsurfb.2024.113920 (2024).

    Google Scholar 

  21. García-Pérez, J. et al. Immunogenic dynamics and SARS-CoV-2 variant neutralisation of the heterologous ChAdOx1-S/BNT162b2 vaccination: Secondary analysis of the randomised CombiVacS study. EClinicalMedicine 50, 101529. https://doi.org/10.1016/j.eclinm.2022.101529 (2022).

    Google Scholar 

  22. Lin, Q., Zhu, L., Ni, Z., Meng, H. & You, L. Duration of serum neutralizing antibodies for SARS-CoV-2: Lessons from SARS-CoV infection., Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 53 (5), 821–822 (2020). (England) https://doi.org/10.1016/j.jmii.2020.03.015

  23. Flaxman, A. et al. Sep., Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002)., Lancet (London, England), 398 (10304), 981–990 (2021). https://doi.org/10.1016/S0140-6736(21)01699-8

  24. Nazeri, S., Zakeri, S., Mehrizi, A. A., Sardari, S. & Djadid, N. D. Measuring of IgG2c isotype instead of IgG2a in immunized C57BL/6 mice with plasmodium Vivax TRAP as a subunit vaccine candidate in order to correct interpretation of Th1 versus Th2 immune response. Exp. Parasitol. 216 https://doi.org/10.1016/J.EXPPARA.2020.107944 (Sep. 2020).

  25. Adam, A. et al. Nov., A modified porous silicon microparticle potentiates protective systemic and mucosal immunity for SARS-CoV-2 subunit vaccine., Transl. Res., 249, 13–27 (2022). https://doi.org/10.1016/j.trsl.2022.06.004

  26. Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588(7839), 682. https://doi.org/10.1038/S41586-020-2852-1 (2020).

    Google Scholar 

  27. Li, H. et al. The abundant distribution and duplication of SARS-CoV-2 in the cerebrum and lungs promote a high mortality rate in Transgenic hACE2-C57 mice. Int. J. Mol. Sci. 25 (2). https://doi.org/10.3390/ijms25020997 (2024).

  28. Starr, T. N. et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182(5), 1295–1310. https://doi.org/10.1016/J.CELL.2020.08.012 (2020) (.e20).

    Google Scholar 

  29. Liu, H. et al. The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell. Res. 31(6), 720–722. https://doi.org/10.1038/S41422-021-00496-8 (2021).

    Google Scholar 

  30. García-Arriaza, J. et al. Mar., COVID-19 Vaccine Candidates Based on Modified Vaccinia Virus Ankara Expressing the SARS-CoV-2 Spike Protein Induce Robust T- and B-Cell Immune Responses and Full Efficacy in Mice, J. Virol., 95(7), (2021). https://doi.org/10.1128/JVI.02260-20

  31. He, P., Zou, Y. & Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccin Immunother. 11 (2), 477. https://doi.org/10.1080/21645515.2014.1004026 (2015).

    Google Scholar 

  32. Hudu, S. A., Shinkafi, S. H. & Umar, S. An overview of Recombinant vaccine technology, adjuvants and vaccine delivery methods. Int. J. Pharm. Pharm. Sci. 8 (11), 19–24. https://doi.org/10.22159/ijpps.2016v8i11.14311 (2016).

    Google Scholar 

Download references

Funding

This work was supported by grants from Comunidad de Madrid (COV20/01101-CM and REACT-UE, ANTICIPA-CM Ref. PR38/21–24) to E.M.N and M.G.M and from Spanish Ministry of Science and Innovation (RETOS PID2022-1366620B-100) to M.G.M.

Author information

Author notes
  1. Eduardo Martínez-Naves & Manuel Gómez del Moral

    Present address: Instituto de Investigación Sanitaria Hospital 12 Octubre (imas12), Madrid, 28041, Spain

  2. These authors contributed equally to this work: Eduardo Martínez-Naves and Manuel Gómez del Moral.

Authors and Affiliations

  1. Department of Cellular Biology and Histology, School of Medicine, Universidad Complutense of Madrid (UCM), Madrid, 28040, Spain

    Ana López-Gómez, Elsa Mayol-Hornero, Jana Ausio Cendra & Manuel Gómez del Moral

  2. Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), Madrid, 28040, Spain

    Ana López-Gómez, Irene Real-Arévalo, Elsa Mayol-Hornero, Benigno Rivas-Pardo, Beatriz Amorós-Pérez, Beatriz Martín-Adrados, Ignacio Juárez & Eduardo Martínez-Naves

  3. Inmunotek S.L., Alcalá de Henares, 28805, Spain

    Irene Real-Arévalo & Beatriz Amorós-Pérez

  4. Department of Biochemistry and Molecular Biology, School of Chemistry, Universidad Complutense of Madrid, Madrid, 28040, Spain

    Diego Laxalde-Fernández & Álvaro Martínez-Del-Pozo

  5. Department of applied physics, Universidad Autónoma de Madrid, Madrid, España

    Raúl J. Martín-Palma

  6. Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA‐CSIC), Valdeolmos, Madrid, Spain

    Pablo Nogales-Altozano & Noemí Sevilla

Authors
  1. Ana López-Gómez
    View author publications

    Search author on:PubMed Google Scholar

  2. Irene Real-Arévalo
    View author publications

    Search author on:PubMed Google Scholar

  3. Elsa Mayol-Hornero
    View author publications

    Search author on:PubMed Google Scholar

  4. Jana Ausio Cendra
    View author publications

    Search author on:PubMed Google Scholar

  5. Diego Laxalde-Fernández
    View author publications

    Search author on:PubMed Google Scholar

  6. Pablo Nogales-Altozano
    View author publications

    Search author on:PubMed Google Scholar

  7. Benigno Rivas-Pardo
    View author publications

    Search author on:PubMed Google Scholar

  8. Beatriz Amorós-Pérez
    View author publications

    Search author on:PubMed Google Scholar

  9. Beatriz Martín-Adrados
    View author publications

    Search author on:PubMed Google Scholar

  10. Ignacio Juárez
    View author publications

    Search author on:PubMed Google Scholar

  11. Álvaro Martínez-Del-Pozo
    View author publications

    Search author on:PubMed Google Scholar

  12. Raúl J. Martín-Palma
    View author publications

    Search author on:PubMed Google Scholar

  13. Noemí Sevilla
    View author publications

    Search author on:PubMed Google Scholar

  14. Eduardo Martínez-Naves
    View author publications

    Search author on:PubMed Google Scholar

  15. Manuel Gómez del Moral
    View author publications

    Search author on:PubMed Google Scholar

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by A.L-G., I.R-A., E.M-H., J.A.C., D.L-F., P. N-A., B R-P., B. A-P., B. M-A. and I. J. The first draft of the manuscript was written by M. G. M., E.M.N., and A. L-G. N.S., A. M-del-P. and R. J. M-P. commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Eduardo Martínez-Naves or Manuel Gómez del Moral.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Universidad Complutense of Madrid and Comunidad of Madrid (Dec 14/2022/PROEX 272.5/22).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gómez, A., Real-Arévalo, I., Mayol-Hornero, E. et al. Mesoporous silicon microparticles enhance antiviral immunity and memory responses against SARS-CoV-2. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38583-8

Download citation

  • Received: 03 September 2025

  • Accepted: 30 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38583-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Vaccine
  • Virus
  • Cytotoxic
  • Mesoporous silicon microparticles
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research