Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Genome editing across Dictyostelia species enables comparative functional genetics of social amoebas
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Genome editing across Dictyostelia species enables comparative functional genetics of social amoebas

  • Shuka Oishi1,
  • Sousuke Doi1,
  • Takumi Sekida1,
  • Kensuke Yamashita1,
  • Yoko Yamada1 &
  • …
  • Tetsuya Muramoto1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biological techniques
  • Developmental biology
  • Genetics

Abstract

Gene manipulation is essential for understanding biological mechanisms, yet genetic modification in the social amoebas (Dictyostelia) has been largely limited to Dictyostelium discoideum. Here, we aimed to establish a CRISPR/Cas9-based genome-editing system applicable across the phylogenetic breadth of Dictyostelia, spanning Groups 1–4. Using an extrachromosomal CRISPR/Cas9 vector from D. discoideum, we disrupted stlA and pkaC in Polysphondylium violaceum and pkaC in two early-branching species, Heterostelium pallidum and Cavenderia fasciculata. In D. discoideum, co-introduction of donor oligos with the CRISPR vector enabled selection-free knockout generation of pkaC with 28.6% efficiency. In H. pallidum, where genome editing is typically inefficient, co-electroporation of donor oligos with the CRISPR/Cas9 vector followed by 4 days of drug selection increased the frequency of pkaC disruption from 0.9% to 8.3%. These results demonstrated that the D. discoideum CRISPR/Cas9 system can be extended across Dictyostelia, providing a versatile platform for comparative genetic and evolutionary developmental studies.

Similar content being viewed by others

CRISPR/Cas9-based genome-wide screening of Dictyostelium

Article Open access 02 July 2022

Development of an in vivo cleavable donor plasmid for targeted transgene integration by CRISPR-Cas9 and CRISPR-Cas12a

Article Open access 22 October 2022

High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR–Cas9 editing

Article Open access 29 May 2024

Data availability

All data are presented in the manuscript or the supplementary materials. The plasmids and cell lines generated in this study are available from NBRP Nenkin.

References

  1. Hillmann, F. et al. Multiple roots of fruiting body formation in amoebozoa. Genome Biol. Evol. 10, 591–606. https://doi.org/10.1093/gbe/evy011 (2018).

    Google Scholar 

  2. Kawabe, Y., Du, Q., Schilde, C. & Schaap, P. Evolution of multicellularity in Dictyostelia. Int. J. Dev. Biol. 63, 359–369. https://doi.org/10.1387/ijdb.190108ps (2019).

    Google Scholar 

  3. Medina, J. M., Shreenidhi, P. M., Larsen, T. J., Queller, D. C. & Strassmann, J. E. Cooperation and conflict in the social amoeba Dictyostelium discoideum. Int. J. Dev. Biol. 63, 371–382. https://doi.org/10.1387/ijdb.190158jm (2019).

    Google Scholar 

  4. Shirokawa, Y., Shimada, M., Shimada, N. & Sawai, S. Prestalk-like positioning of de-differentiated cells in the social amoeba Dictyostelium discoideum. Sci. Rep. 14, 7677. https://doi.org/10.1038/s41598-024-58277-3 (2024).

    Google Scholar 

  5. Schaap, P. et al. Molecular phylogeny and evolution of morphology in the social amoebas. Science 314, 661–663. https://doi.org/10.1126/science.1130670 (2006).

    Google Scholar 

  6. Sheikh, S. et al. A new classification of the dictyostelids. Protist 169, 1–28. https://doi.org/10.1016/j.protis.2017.11.001 (2018).

    Google Scholar 

  7. Singh, R., Schilde, C. & Schaap, P. A core phylogeny of dictyostelia inferred from genomes representative of the eight major and minor taxonomic divisions of the group. BMC Evol. Biol. 16, 251. https://doi.org/10.1186/s12862-016-0825-7 (2016).

    Google Scholar 

  8. Glockner, G. & Heidel, A. J. Centromere sequence and dynamics in Dictyostelium discoideum. Nucleic Acids Res. 37, 1809–1816. https://doi.org/10.1093/nar/gkp017 (2009).

    Google Scholar 

  9. Heidel, A. J. et al. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 21, 1882–1891. https://doi.org/10.1101/gr.121137.111 (2011).

    Google Scholar 

  10. Kin, K., Forbes, G., Cassidy, A. & Schaap, P. Cell-type specific RNA-Seq reveals novel roles and regulatory programs for terminally differentiated dictyostelium cells. BMC Genom. 19, 764. https://doi.org/10.1186/s12864-018-5146-3 (2018).

    Google Scholar 

  11. Parikh, A. et al. Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol. 11(R35). https://doi.org/10.1186/gb-2010-11-3-r35 (2010).

  12. Kin, K., Chen, Z. H., Forbes, G. & Schaap, P. Evolution of a novel cell type in dictyostelia required gene duplication of a cudA-like transcription factor. Curr. Biol. 32 (e424), 428–437. https://doi.org/10.1016/j.cub.2021.11.047 (2022).

    Google Scholar 

  13. Kawabe, Y. et al. Activated cAMP receptors switch encystation into sporulation. Proc. Natl. Acad. Sci. U S A. 106, 7089–7094. https://doi.org/10.1073/pnas.0901617106 (2009).

    Google Scholar 

  14. Narita, T. B. et al. Loss of the polyketide synthase StlB results in stalk cell overproduction in polysphondylium violaceum. Genome Biol. Evol. 12, 674–683. https://doi.org/10.1093/gbe/evaa079 (2020).

    Google Scholar 

  15. Baldauf, S. L., Romeralo, M., Fiz-Palacios, O. & Heidari, N. A deep hidden diversity of Dictyostelia. Protist 169, 64–78. https://doi.org/10.1016/j.protis.2017.12.005 (2018).

    Google Scholar 

  16. Hashimura, H. et al. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum. Cell. Struct. Funct. 49, 135–153. https://doi.org/10.1247/csf.24065 (2024).

    Google Scholar 

  17. Paschke, P. et al. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One. 13, e0196809. https://doi.org/10.1371/journal.pone.0196809 (2018).

    Google Scholar 

  18. Sekine, R., Kawata, T. & Muramoto, T. CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci. Rep. 8, 8471. https://doi.org/10.1038/s41598-018-26756-z (2018).

    Google Scholar 

  19. Yamashita, K., Shimane, K. & Muramoto, T. Optogenetic control of cAMP oscillations reveals frequency-selective transcription factor dynamics in Dictyostelium. Development 152, dev204403. https://doi.org/10.1242/dev.204403 (2025).

    Google Scholar 

  20. Mesquita, A. et al. Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model. Autophagy 13, 24–40. https://doi.org/10.1080/15548627.2016.1226737 (2017).

    Google Scholar 

  21. Gruenheit, N. et al. Mutant resources for functional genomics in Dictyostelium discoideum using REMI-seq technology. BMC Biol. 19, 172. https://doi.org/10.1186/s12915-021-01108-y (2021).

    Google Scholar 

  22. Huber, R. J., Steimle, P. A. & Damer, C. K. Cell biology of Dictyostelium. BMC Mol. Cell. Biol. 26 https://doi.org/10.1186/s12860-025-00550-y (2025).

  23. Storey, C. L., Williams, R. S. B., Fisher, P. R. & Annesley, S. J. Dictyostelium discoideum: A model system for neurological disorders. Cells. 11. https://doi.org/10.3390/cells11030463 (2022).

  24. S. B. Williams, R. et al. Moving the research forward: the best of British biology using the tractable model system dictyostelium discoideum. Cells. 10 https://doi.org/10.3390/cells10113036 (2021).

  25. Hao, Y. et al. A transcription factor complex in Dictyostelium enables adaptive changes in macropinocytosis during the growth-to-development transition. Dev Cell. 59, 645–660.e648. https://doi.org/10.1016/j.devcel.2024.01.012 (2024).

  26. Ogasawara, T. et al. CRISPR/Cas9-based genome-wide screening of Dictyostelium. Sci. Rep. 12, 11215. https://doi.org/10.1038/s41598-022-15500-3 (2022).

    Google Scholar 

  27. De Lozanne, A. & Spudich, J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091. https://doi.org/10.1126/science.3576222 (1987).

    Google Scholar 

  28. Iriki, H., Kawata, T. & Muramoto, T. Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR Nickase. PLoS One. 14, e0224128. https://doi.org/10.1371/journal.pone.0224128 (2019).

    Google Scholar 

  29. Yamashita, K., Iriki, H., Kamimura, Y. & Muramoto, T. CRISPR toolbox for genome editing in Dictyostelium. Front. Cell. Dev. Biol. 9, 721630. https://doi.org/10.3389/fcell.2021.721630 (2021).

    Google Scholar 

  30. Yamashita, K. & Muramoto, T. Efficient endogenous protein labelling in Dictyostelium using CRISPR/Cas9 knock-in and split fluorescent proteins. PLoS One. 20, e0326577. https://doi.org/10.1371/journal.pone.0326577 (2025).

    Google Scholar 

  31. Garriga-Canut, M. et al. Unlocking CRISPR-Cas9 editing for widely diverse dictyostelid species. Mol. Syst. Biol. https://doi.org/10.1038/s44320-025-00180-8 (2026).

    Google Scholar 

  32. Kuwayama, H., Tohyama, T. & Urushihara, H. Cross-species functional complementation of cellulose synthase during the development of cellular slime molds. Dev. Growth Differ. 56, 526–533. https://doi.org/10.1111/dgd.12153 (2014).

    Google Scholar 

  33. Mohri, K., Kiyota, Y., Kuwayama, H. & Urushihara, H. Temporal and non-permanent division of labor during sorocarp formation in the social amoeba Acytostelium subglobosum. Dev. Biol. 375, 202–209. https://doi.org/10.1016/j.ydbio.2013.01.003 (2013).

    Google Scholar 

  34. Kin, K. et al. The protein kinases of Dictyostelia and their incorporation into a signalome. Cell. Signal. 108, 110714. https://doi.org/10.1016/j.cellsig.2023.110714 (2023).

    Google Scholar 

  35. Glockner, G. et al. The multicellularity genes of dictyostelid social amoebas. Nat. Commun. 7, 12085. https://doi.org/10.1038/ncomms12085 (2016).

    Google Scholar 

  36. Mann, S. K. & Firtel, R. A. A developmentally regulated, putative serine/threonine protein kinase is essential for development in Dictyostelium. Mech. Dev. 35, 89–101. https://doi.org/10.1016/0925-4773(91)90060-j (1991).

    Google Scholar 

  37. Yamasaki, D. T., Araki, T. & Narita, T. B. The polyketide synthase StlA is involved in inducing aggregation in Polysphondylium violaceum. Biosci. Biotechnol. Biochem. 86, 1590–1598. https://doi.org/10.1093/bbb/zbac144 (2022).

    Google Scholar 

  38. Kawabe, Y., Enomoto, T., Morio, T., Urushihara, H. & Tanaka, Y. LbrA, a protein predicted to have a role in vesicle trafficking, is necessary for normal morphogenesis in Polysphondylium pallidum. Gene 239, 75–79. https://doi.org/10.1016/s0378-1119(99)00379-0 (1999).

    Google Scholar 

  39. Muramoto, T., Takeda, S., Furuya, Y. & Urushihara, H. Reverse genetic analyses of gamete-enriched genes revealed a novel regulator of the cAMP signaling pathway in Dictyostelium discoideum. Mech. Dev. 122, 733–743. https://doi.org/10.1016/j.mod.2004.11.015 (2005).

    Google Scholar 

  40. Kawabe, Y., Schilde, C., Du, Q. & Schaap, P. A conserved signalling pathway for amoebozoan encystation that was co-opted for multicellular development. Sci. Rep. 5, 9644. https://doi.org/10.1038/srep09644 (2015).

    Google Scholar 

  41. Mann, S. K., Yonemoto, W. M., Taylor, S. S. & Firtel, R. A. DdPK3, which plays essential roles during Dictyostelium development, encodes the catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U S A. 89, 10701–10705. https://doi.org/10.1073/pnas.89.22.10701 (1992).

    Google Scholar 

  42. Asano, Y. et al. Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum. Sci. Rep. 11, 11163. https://doi.org/10.1038/s41598-021-89546-0 (2021).

    Google Scholar 

  43. Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264. https://doi.org/10.1146/annurev-biochem-060815-014607 (2016).

    Google Scholar 

  44. Muramoto, T., Iriki, H., Watanabe, J. & Kawata, T. Recent advances in CRISPR/Cas9-mediated genome editing in Dictyostelium. Cells. 8. https://doi.org/10.3390/cells8010046 (2019).

  45. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832. https://doi.org/10.1038/nbt.2647 (2013).

    Google Scholar 

  46. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843. https://doi.org/10.1038/nbt.2673 (2013).

    Google Scholar 

  47. Nichols, J. M., Veltman, D. & Kay, R. R. Chemotaxis of a model organism: progress with Dictyostelium. Curr. Opin. Cell. Biol. 36, 7–12. https://doi.org/10.1016/j.ceb.2015.06.005 (2015).

    Google Scholar 

  48. Veltman, D. M. et al. A plasma membrane template for macropinocytic cups. Elife. 5. https://doi.org/10.7554/eLife.20085 (2016).

  49. Veltman, D. M., Akar, G., Bosgraaf, L. & Van Haastert, P. J. A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61, 110–118. https://doi.org/10.1016/j.plasmid.2008.11.003 (2009).

    Google Scholar 

  50. Park, J., Bae, S. & Kim, J. S. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31, 4014–4016. https://doi.org/10.1093/bioinformatics/btv537 (2015).

    Google Scholar 

  51. Kawabe, Y. & Schaap, P. Development of the dictyostelid Polysphondylium violaceum does not require secreted cAMP. Biol. Open. 12 https://doi.org/10.1242/bio.059728 (2023).

Download references

Acknowledgements

We thank Dr. Takaaki B. Narita for valuable advice on the stlA gene of P. violaceum, and are grateful to Mr. Yuichiro Ishiyama, Mr. Takanori Ogasawara, and Ms. Mio Ito for their assistance with cloning parts of the CRISPR/Cas9 vectors. We also acknowledge the National BioResource Project (NBRP) Nenkin for supplying the dictyostelid species used in this work. Paperpal and ChatGPT were used solely to improve the English language during the revision process.

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (23K05785 to T.M.) and by a JSPS Research Fellowship for Young Scientists (DC1; 23KJ1977 to K.Y.).

Author information

Authors and Affiliations

  1. Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan

    Shuka Oishi, Sousuke Doi, Takumi Sekida, Kensuke Yamashita, Yoko Yamada & Tetsuya Muramoto

Authors
  1. Shuka Oishi
    View author publications

    Search author on:PubMed Google Scholar

  2. Sousuke Doi
    View author publications

    Search author on:PubMed Google Scholar

  3. Takumi Sekida
    View author publications

    Search author on:PubMed Google Scholar

  4. Kensuke Yamashita
    View author publications

    Search author on:PubMed Google Scholar

  5. Yoko Yamada
    View author publications

    Search author on:PubMed Google Scholar

  6. Tetsuya Muramoto
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.O. performed most of the experiments. S.D. and T.S. optimized CRISPR/Cas9 conditions in non-model Dictyostelia. K.Y. and Y.Y. contributed to improving cell culture and selection procedures. T.M. conceived and designed the study, and supervised the project. T.M. wrote the manuscript with contributions from K.Y. and S.O. All authors discussed the results and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tetsuya Muramoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oishi, S., Doi, S., Sekida, T. et al. Genome editing across Dictyostelia species enables comparative functional genetics of social amoebas. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38605-5

Download citation

  • Received: 24 November 2025

  • Accepted: 30 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38605-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dictyostelium
  • Dictyostelids
  • CRISPR-Cas9
  • Genome editing
  • Multicellular development
  • Cell-type differentiation
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing