Abstract
Gene manipulation is essential for understanding biological mechanisms, yet genetic modification in the social amoebas (Dictyostelia) has been largely limited to Dictyostelium discoideum. Here, we aimed to establish a CRISPR/Cas9-based genome-editing system applicable across the phylogenetic breadth of Dictyostelia, spanning Groups 1–4. Using an extrachromosomal CRISPR/Cas9 vector from D. discoideum, we disrupted stlA and pkaC in Polysphondylium violaceum and pkaC in two early-branching species, Heterostelium pallidum and Cavenderia fasciculata. In D. discoideum, co-introduction of donor oligos with the CRISPR vector enabled selection-free knockout generation of pkaC with 28.6% efficiency. In H. pallidum, where genome editing is typically inefficient, co-electroporation of donor oligos with the CRISPR/Cas9 vector followed by 4 days of drug selection increased the frequency of pkaC disruption from 0.9% to 8.3%. These results demonstrated that the D. discoideum CRISPR/Cas9 system can be extended across Dictyostelia, providing a versatile platform for comparative genetic and evolutionary developmental studies.
Similar content being viewed by others
Data availability
All data are presented in the manuscript or the supplementary materials. The plasmids and cell lines generated in this study are available from NBRP Nenkin.
References
Hillmann, F. et al. Multiple roots of fruiting body formation in amoebozoa. Genome Biol. Evol. 10, 591–606. https://doi.org/10.1093/gbe/evy011 (2018).
Kawabe, Y., Du, Q., Schilde, C. & Schaap, P. Evolution of multicellularity in Dictyostelia. Int. J. Dev. Biol. 63, 359–369. https://doi.org/10.1387/ijdb.190108ps (2019).
Medina, J. M., Shreenidhi, P. M., Larsen, T. J., Queller, D. C. & Strassmann, J. E. Cooperation and conflict in the social amoeba Dictyostelium discoideum. Int. J. Dev. Biol. 63, 371–382. https://doi.org/10.1387/ijdb.190158jm (2019).
Shirokawa, Y., Shimada, M., Shimada, N. & Sawai, S. Prestalk-like positioning of de-differentiated cells in the social amoeba Dictyostelium discoideum. Sci. Rep. 14, 7677. https://doi.org/10.1038/s41598-024-58277-3 (2024).
Schaap, P. et al. Molecular phylogeny and evolution of morphology in the social amoebas. Science 314, 661–663. https://doi.org/10.1126/science.1130670 (2006).
Sheikh, S. et al. A new classification of the dictyostelids. Protist 169, 1–28. https://doi.org/10.1016/j.protis.2017.11.001 (2018).
Singh, R., Schilde, C. & Schaap, P. A core phylogeny of dictyostelia inferred from genomes representative of the eight major and minor taxonomic divisions of the group. BMC Evol. Biol. 16, 251. https://doi.org/10.1186/s12862-016-0825-7 (2016).
Glockner, G. & Heidel, A. J. Centromere sequence and dynamics in Dictyostelium discoideum. Nucleic Acids Res. 37, 1809–1816. https://doi.org/10.1093/nar/gkp017 (2009).
Heidel, A. J. et al. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 21, 1882–1891. https://doi.org/10.1101/gr.121137.111 (2011).
Kin, K., Forbes, G., Cassidy, A. & Schaap, P. Cell-type specific RNA-Seq reveals novel roles and regulatory programs for terminally differentiated dictyostelium cells. BMC Genom. 19, 764. https://doi.org/10.1186/s12864-018-5146-3 (2018).
Parikh, A. et al. Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biol. 11(R35). https://doi.org/10.1186/gb-2010-11-3-r35 (2010).
Kin, K., Chen, Z. H., Forbes, G. & Schaap, P. Evolution of a novel cell type in dictyostelia required gene duplication of a cudA-like transcription factor. Curr. Biol. 32 (e424), 428–437. https://doi.org/10.1016/j.cub.2021.11.047 (2022).
Kawabe, Y. et al. Activated cAMP receptors switch encystation into sporulation. Proc. Natl. Acad. Sci. U S A. 106, 7089–7094. https://doi.org/10.1073/pnas.0901617106 (2009).
Narita, T. B. et al. Loss of the polyketide synthase StlB results in stalk cell overproduction in polysphondylium violaceum. Genome Biol. Evol. 12, 674–683. https://doi.org/10.1093/gbe/evaa079 (2020).
Baldauf, S. L., Romeralo, M., Fiz-Palacios, O. & Heidari, N. A deep hidden diversity of Dictyostelia. Protist 169, 64–78. https://doi.org/10.1016/j.protis.2017.12.005 (2018).
Hashimura, H. et al. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum. Cell. Struct. Funct. 49, 135–153. https://doi.org/10.1247/csf.24065 (2024).
Paschke, P. et al. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One. 13, e0196809. https://doi.org/10.1371/journal.pone.0196809 (2018).
Sekine, R., Kawata, T. & Muramoto, T. CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci. Rep. 8, 8471. https://doi.org/10.1038/s41598-018-26756-z (2018).
Yamashita, K., Shimane, K. & Muramoto, T. Optogenetic control of cAMP oscillations reveals frequency-selective transcription factor dynamics in Dictyostelium. Development 152, dev204403. https://doi.org/10.1242/dev.204403 (2025).
Mesquita, A. et al. Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model. Autophagy 13, 24–40. https://doi.org/10.1080/15548627.2016.1226737 (2017).
Gruenheit, N. et al. Mutant resources for functional genomics in Dictyostelium discoideum using REMI-seq technology. BMC Biol. 19, 172. https://doi.org/10.1186/s12915-021-01108-y (2021).
Huber, R. J., Steimle, P. A. & Damer, C. K. Cell biology of Dictyostelium. BMC Mol. Cell. Biol. 26 https://doi.org/10.1186/s12860-025-00550-y (2025).
Storey, C. L., Williams, R. S. B., Fisher, P. R. & Annesley, S. J. Dictyostelium discoideum: A model system for neurological disorders. Cells. 11. https://doi.org/10.3390/cells11030463 (2022).
S. B. Williams, R. et al. Moving the research forward: the best of British biology using the tractable model system dictyostelium discoideum. Cells. 10 https://doi.org/10.3390/cells10113036 (2021).
Hao, Y. et al. A transcription factor complex in Dictyostelium enables adaptive changes in macropinocytosis during the growth-to-development transition. Dev Cell. 59, 645–660.e648. https://doi.org/10.1016/j.devcel.2024.01.012 (2024).
Ogasawara, T. et al. CRISPR/Cas9-based genome-wide screening of Dictyostelium. Sci. Rep. 12, 11215. https://doi.org/10.1038/s41598-022-15500-3 (2022).
De Lozanne, A. & Spudich, J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236, 1086–1091. https://doi.org/10.1126/science.3576222 (1987).
Iriki, H., Kawata, T. & Muramoto, T. Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR Nickase. PLoS One. 14, e0224128. https://doi.org/10.1371/journal.pone.0224128 (2019).
Yamashita, K., Iriki, H., Kamimura, Y. & Muramoto, T. CRISPR toolbox for genome editing in Dictyostelium. Front. Cell. Dev. Biol. 9, 721630. https://doi.org/10.3389/fcell.2021.721630 (2021).
Yamashita, K. & Muramoto, T. Efficient endogenous protein labelling in Dictyostelium using CRISPR/Cas9 knock-in and split fluorescent proteins. PLoS One. 20, e0326577. https://doi.org/10.1371/journal.pone.0326577 (2025).
Garriga-Canut, M. et al. Unlocking CRISPR-Cas9 editing for widely diverse dictyostelid species. Mol. Syst. Biol. https://doi.org/10.1038/s44320-025-00180-8 (2026).
Kuwayama, H., Tohyama, T. & Urushihara, H. Cross-species functional complementation of cellulose synthase during the development of cellular slime molds. Dev. Growth Differ. 56, 526–533. https://doi.org/10.1111/dgd.12153 (2014).
Mohri, K., Kiyota, Y., Kuwayama, H. & Urushihara, H. Temporal and non-permanent division of labor during sorocarp formation in the social amoeba Acytostelium subglobosum. Dev. Biol. 375, 202–209. https://doi.org/10.1016/j.ydbio.2013.01.003 (2013).
Kin, K. et al. The protein kinases of Dictyostelia and their incorporation into a signalome. Cell. Signal. 108, 110714. https://doi.org/10.1016/j.cellsig.2023.110714 (2023).
Glockner, G. et al. The multicellularity genes of dictyostelid social amoebas. Nat. Commun. 7, 12085. https://doi.org/10.1038/ncomms12085 (2016).
Mann, S. K. & Firtel, R. A. A developmentally regulated, putative serine/threonine protein kinase is essential for development in Dictyostelium. Mech. Dev. 35, 89–101. https://doi.org/10.1016/0925-4773(91)90060-j (1991).
Yamasaki, D. T., Araki, T. & Narita, T. B. The polyketide synthase StlA is involved in inducing aggregation in Polysphondylium violaceum. Biosci. Biotechnol. Biochem. 86, 1590–1598. https://doi.org/10.1093/bbb/zbac144 (2022).
Kawabe, Y., Enomoto, T., Morio, T., Urushihara, H. & Tanaka, Y. LbrA, a protein predicted to have a role in vesicle trafficking, is necessary for normal morphogenesis in Polysphondylium pallidum. Gene 239, 75–79. https://doi.org/10.1016/s0378-1119(99)00379-0 (1999).
Muramoto, T., Takeda, S., Furuya, Y. & Urushihara, H. Reverse genetic analyses of gamete-enriched genes revealed a novel regulator of the cAMP signaling pathway in Dictyostelium discoideum. Mech. Dev. 122, 733–743. https://doi.org/10.1016/j.mod.2004.11.015 (2005).
Kawabe, Y., Schilde, C., Du, Q. & Schaap, P. A conserved signalling pathway for amoebozoan encystation that was co-opted for multicellular development. Sci. Rep. 5, 9644. https://doi.org/10.1038/srep09644 (2015).
Mann, S. K., Yonemoto, W. M., Taylor, S. S. & Firtel, R. A. DdPK3, which plays essential roles during Dictyostelium development, encodes the catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U S A. 89, 10701–10705. https://doi.org/10.1073/pnas.89.22.10701 (1992).
Asano, Y. et al. Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum. Sci. Rep. 11, 11163. https://doi.org/10.1038/s41598-021-89546-0 (2021).
Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264. https://doi.org/10.1146/annurev-biochem-060815-014607 (2016).
Muramoto, T., Iriki, H., Watanabe, J. & Kawata, T. Recent advances in CRISPR/Cas9-mediated genome editing in Dictyostelium. Cells. 8. https://doi.org/10.3390/cells8010046 (2019).
Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832. https://doi.org/10.1038/nbt.2647 (2013).
Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843. https://doi.org/10.1038/nbt.2673 (2013).
Nichols, J. M., Veltman, D. & Kay, R. R. Chemotaxis of a model organism: progress with Dictyostelium. Curr. Opin. Cell. Biol. 36, 7–12. https://doi.org/10.1016/j.ceb.2015.06.005 (2015).
Veltman, D. M. et al. A plasma membrane template for macropinocytic cups. Elife. 5. https://doi.org/10.7554/eLife.20085 (2016).
Veltman, D. M., Akar, G., Bosgraaf, L. & Van Haastert, P. J. A new set of small, extrachromosomal expression vectors for Dictyostelium discoideum. Plasmid 61, 110–118. https://doi.org/10.1016/j.plasmid.2008.11.003 (2009).
Park, J., Bae, S. & Kim, J. S. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31, 4014–4016. https://doi.org/10.1093/bioinformatics/btv537 (2015).
Kawabe, Y. & Schaap, P. Development of the dictyostelid Polysphondylium violaceum does not require secreted cAMP. Biol. Open. 12 https://doi.org/10.1242/bio.059728 (2023).
Acknowledgements
We thank Dr. Takaaki B. Narita for valuable advice on the stlA gene of P. violaceum, and are grateful to Mr. Yuichiro Ishiyama, Mr. Takanori Ogasawara, and Ms. Mio Ito for their assistance with cloning parts of the CRISPR/Cas9 vectors. We also acknowledge the National BioResource Project (NBRP) Nenkin for supplying the dictyostelid species used in this work. Paperpal and ChatGPT were used solely to improve the English language during the revision process.
Funding
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (23K05785 to T.M.) and by a JSPS Research Fellowship for Young Scientists (DC1; 23KJ1977 to K.Y.).
Author information
Authors and Affiliations
Contributions
S.O. performed most of the experiments. S.D. and T.S. optimized CRISPR/Cas9 conditions in non-model Dictyostelia. K.Y. and Y.Y. contributed to improving cell culture and selection procedures. T.M. conceived and designed the study, and supervised the project. T.M. wrote the manuscript with contributions from K.Y. and S.O. All authors discussed the results and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Oishi, S., Doi, S., Sekida, T. et al. Genome editing across Dictyostelia species enables comparative functional genetics of social amoebas. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38605-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38605-5


