Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Miniaturized dual-band MIMO antenna with high gain and isolation for mm-wave applications
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Miniaturized dual-band MIMO antenna with high gain and isolation for mm-wave applications

  • R. Gayathri1,
  • K. Kavitha2,
  • D. Rajesh Kumar3 &
  • …
  • P. Sundaravadivel4 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Energy science and technology
  • Engineering

Abstract

This work presents a compact dual-band four-element multiple-input multiple-output (MIMO) antenna designed for millimeter-wave (mm-wave) applications, with particular emphasis on 5G wireless communication systems. The proposed antenna occupies an ultra-compact volume of 15 × 15 × 0.8 mm³ (approximately 0.55λ × 0.55λ × 0.03λ at 28 GHz), making it highly suitable for integration into space-constrained wireless devices. The antenna operates efficiently over two mm-wave bands, 29–31 GHz and 36.5–38.5 GHz, covering key 5G NR-FR2 frequency allocations. By incorporating strategically placed slots and a compact radiating structure, the antenna achieves a peak realized gain of 8.1 dBi and 8.64 dBi in the lower and upper operating bands, respectively, while maintaining strong port isolation exceeding 25 dB. Both simulated and measured results demonstrate good agreement, validating the effectiveness of the proposed design. A comprehensive MIMO performance evaluation confirms excellent diversity characteristics, with a very low envelope correlation coefficient (ECC) of less than 0.001, a high diversity gain (DG) of approximately 9.99 dB, a total active reflection coefficient (TARC) maintained within − 5 to 5 dB, and a low channel capacity loss (CCL) of 0.21 bit/s/Hz across the operating bands. Owing to its compact size, high gain, strong isolation, and robust MIMO performance, the proposed antenna is a promising candidate for next-generation mm-wave 5G and future wireless communication systems.

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. Li, J. et al. Dual-band millimeter-wave antenna with high isolation. IEEE Antennas. Wirel. Propag. Lett. 20(1), 155–159 (2021).

    Google Scholar 

  2. Zhang, Y. et al. Compact dual-band millimeter-wave antenna for 5G applications. IEEE Trans. Antennas Propag. 69(3), 1820–1829 (2021).

    Google Scholar 

  3. Chen, H. et al. Defected ground structure for dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 20(2), 318–322 (2021).

    Google Scholar 

  4. Wang, J. et al. Electromagnetic bandgap structure for dual-band millimeter-wave antenna. IEEE Trans. Antennas Propag. 69(4), 2420–2429 (2021).

    Google Scholar 

  5. Kim, S. J. et al. Polarization diversity technique for dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 20(6), 1034–1038 (2021).

    Google Scholar 

  6. Zhang, Y. et al. Novel feeding structure for compact dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 20(3), 438–442 (2021).

    Google Scholar 

  7. Chen, H. et al. Compact antenna array for dual-band millimeter-wave antenna. IEEE Trans. Antennas Propag. 69. (2021).

  8. Li, J. et al. Metamaterial-based dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 20(8), 1434–1438 (2021).

    Google Scholar 

  9. Zhang, Y. et al. Novel antenna array configuration for dual-band millimeter-wave antenna. IEEE Trans. Antennas Propag. 69(9), 5420–5429 (2021).

    Google Scholar 

  10. Chen, H. et al. Beamforming technique for dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 20(10), 1834–1838 (2021).

    Google Scholar 

  11. Kim, S. J. et al. Aperture-coupled patch antenna for dual-band millimeter-wave antenna. IEEE Trans. Antennas Propag. 69(11), 6420–6429 (2021).

    Google Scholar 

  12. Wang, J. et al. Dual-band millimeter-wave antenna with high gain and low sidelobes. IEEE Antennas. Wirel. Propag. Lett. 20(12), 2234–2238 (2021).

    Google Scholar 

  13. Zhang, Y. et al. Compact dual-band millimeter-wave antenna for 5G applications. IEEE Trans. Antennas Propag. 70(1), 120–129 (2022).

    Google Scholar 

  14. Chen, H. et al. Defected ground structure for dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 21(2), 318–322 (2022).

    Google Scholar 

  15. Li, J. et al. Electromagnetic bandgap structure for dual-band millimeter-wave antenna. IEEE Trans. Antennas Propag. 70(3), 420–429 (2022).

    Google Scholar 

  16. Kim, S. J. et al. Polarization diversity technique for dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 21(4), 1034–1038 (2022).

    Google Scholar 

  17. Zhang, Y. et al. Novel feeding structure for compact dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 21(5), 438–442 (2022).

    Google Scholar 

  18. Chen, H. et al. Compact antenna array for dual-band millimeter-wave antenna. IEEE Trans. Antennas Propag. 70(6), 620–629 (2022).

    Google Scholar 

  19. Wang, J. et al. Metamaterial-based dual-band millimeter-wave antenna. IEEE Antennas. Wirel. Propag. Lett. 21(8), 1434–1438 (2022).

    Google Scholar 

  20. Zhang, Y. et al. Novel antenna array configuration for dual-band millimeter-wave antenna. IEEE Trans. Antennas Propag. 70(9), 920–929 (2022).

    Google Scholar 

  21. Murthy, N. Improved isolation metamaterial inspired mm-wave MIMO dielectric resonator antenna for 5G application. Progress Electromagnet. Res. C. 100, 247–261 (2020).

    Google Scholar 

  22. Esmail, B. A. & Koziel, S. Design and optimization of metamaterial-based dual-band 28/38 ghz 5G MIMO antenna with modified ground for isolation and bandwidth improvement. IEEE Antennas Wirel. Propag. Lett. (2022).

  23. Hasan, M. M. et al. Gain and isolation enhancement of a wideband MIMO antenna using metasurface for 5G sub-6 GHz communication systems. Sci. Rep. 12, 9433 (2022).

  24. Khajeh-Khalili, F., Honarvar, M. A., Naser-Moghadasi, M. & Dolatshahi, M. Gain enhancement and mutual coupling reduction of multiple-input multiple-output antenna for millimeter-wave applications using two types of novel metamaterial structures. Int. J. RF Microwave Comput. Aided Eng. 30, e22006 (2020).

    Google Scholar 

  25. Esmail, B. A. & Koziel, S. High isolation metamaterial-based dual-band MIMO antenna for 5G millimeter-wave applications. AEU - Int. J. Electron. Commun. 158, 154470 (2023).

    Google Scholar 

  26. Hussain, N. et al. Compact wideband patch antenna and its MIMO configuration for 28 GHz applications. AEU - Int. J. Electron. Commun. 132, 153612 (2021).

    Google Scholar 

  27. Hussain, N., Jeong, M. J., Park, J. & Kim, N. A broadband circularly polarized Fabry–Perot resonant antenna using a single-layered PRS for 5G MIMO applications. IEEE Access. 7, 42897–42907. https://doi.org/10.1109/ACCESS.2019.2908441 (2019).

    Google Scholar 

  28. Khalid, M. et al. 4-port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics 9, 71 (2020).

    Google Scholar 

  29. Hussain, M. et al. Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-wave applications. Micromachines 13, 1918 (2022).

    Google Scholar 

  30. Wang, M., Li, F., Li, Y. & Jing, X. A high isolation dual-polarized antenna array with coplanar parasitic decoupling wall. AEU - Int. J. Electron. Commun. 150, 154203 (2022).

    Google Scholar 

  31. Rano, D., Chaudhary, M. A. & Hashmi, M. S. A new model to determine effective permittivity and resonant frequency of patch antenna covered with multiple dielectric layers. IEEE Access. 8, 38884–38895 (2020).

    Google Scholar 

  32. Rana, M. S., Islam, M. R. & Islam, M. T. Design and analysis of a compact microstrip patch antenna for 28-GHz 5G communication. Microw. Opt. Technol. Lett. 64(2), 480–486 (2022).

  33. Farghaly, S. I., Abo Al-Ela, K. E., Zaki, A. Y. & Fouda, H. S. Design of a 28-GHz microstrip patch antenna and 4×4 MIMO configuration with enhanced performance for 5G applications. IEEE Access. 9, 155672–155681 (2021).

    Google Scholar 

  34. Kumar, A., Khanna, R. & Kumar, N. Performance analysis of microstrip patch antennas for millimeter-wave 5G applications. Int. J. RF Microwave Comput.-Aided Eng. 31(6), 1–10 (2021).

  35. Alibakhshikenari, M. et al. Compact planar antennas for 5G communications: A review of recent developments. IEEE Access. 9, 103340–103364 (2021).

    Google Scholar 

  36. Andrenko, A. S., Shestopalov, Y. S. & Lysko, A. A. Recent advances in microstrip antenna modeling and design for millimeter-wave applications. Progress Electromagnet. Res. C. 121, 1–17 (2022).

    Google Scholar 

  37. Malik, P. K., Padmanaban, S. & Holm-Nielsen, J. B. Microstrip Antenna Design for Wireless Applications (CRC Press, 2024).

  38. Perli, B. R. et al. Serpent-configured quad-port MIMO antenna with dual-band operation and defected substrate-ground structure for millimeter-wave systems. J. Infrared Millim. Terahertz Waves. 46(7), 43 (2025).

    Google Scholar 

  39. Sharma, M. et al. Flexible four-port MIMO antenna for 5G NR-FR2 tri-band MmWave application with SAR analysis. Sci. Rep. 14(1), 29100 (2024).

    Google Scholar 

  40. Tathababu, A., Bhaskara, R. P., Kumar, B. K. & Younus, T. M. Design of a novel four-element Koch-Sierpinski fractal MmWave antenna for 5G applications. Int. J. Electron.

  41. Srinubabu, M., Sinh, N. X., Addepalli, T., Louangvilay, X. & Rajasekhar, N. V. Design of integrated 4× 4 MIMO antenna for sub 6-GHz and mm-wave operation using T-shaped isolation. Phys. Scr. 100(5), 055541 (2025).

    Google Scholar 

  42. Amraoui, Y., Halkhams, I., El Alami, R., Jamil, M. O. & Qjidaa, H. Terahertz dual-band antenna design with improved performances using FSS-based metasurface concept for wireless applications. Sci. Afr. 27, e02566 (2025).

    Google Scholar 

  43. Amraoui, Y., Halkhams, I., El Alami, R., Jamil, M. O. & Qjidaa, H. A graphene-based multiband MIMO antenna for high performance terahertz applications. Phys. Scr. 100(7), 075023 (2025).

    Google Scholar 

  44. Amraoui, Y., Halkhams, I., El Alami, R., Jamil, M. O. & Qjidaa, H. High isolation integrated four-port MIMO antenna for Terahertz communication. Results Eng. 105253. (2025).

Download references

Author information

Authors and Affiliations

  1. SNS College of Technology, Coimbatore, India

    R. Gayathri

  2. Kumaraguru College of Technology, Coimbatore, India

    K. Kavitha

  3. Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India

    D. Rajesh Kumar

  4. Saveetha Engineering College, Kanchipuram, Tamilnadu, India

    P. Sundaravadivel

Authors
  1. R. Gayathri
    View author publications

    Search author on:PubMed Google Scholar

  2. K. Kavitha
    View author publications

    Search author on:PubMed Google Scholar

  3. D. Rajesh Kumar
    View author publications

    Search author on:PubMed Google Scholar

  4. P. Sundaravadivel
    View author publications

    Search author on:PubMed Google Scholar

Contributions

All authors contributed meaningfully to the development of this research work. R. Gayathri led the conceptualization of the antenna design, carried out the simulation studies, and coordinated the overall manuscript preparation. K. Kavitha provided technical guidance on MIMO principles, supported the refinement of the design methodology, and contributed to result interpretation and manuscript editing. Rajesh Kumar D assisted in fabricating the prototype, conducting measurements, and validating the simulated performance with experimental results. Sundaravadivel P supervised the research process, ensured methodological rigor, and contributed to the final revision and quality improvement of the manuscript. All authors reviewed and approved the final version of the paper and agree to be accountable for its contents.

Corresponding author

Correspondence to R. Gayathri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, R., Kavitha, K., Rajesh Kumar, D. et al. Miniaturized dual-band MIMO antenna with high gain and isolation for mm-wave applications. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38609-1

Download citation

  • Received: 25 November 2025

  • Accepted: 30 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38609-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • MIMO antenna
  • Millimeter-wave (mm-wave)
  • Dual-band
  • Compact antenna
  • 5G wireless communication systems
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing