Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Comparative spectral analysis of blood and saliva in breast cancer, benign breast disease and healthy controls using ATR-FTIR
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Comparative spectral analysis of blood and saliva in breast cancer, benign breast disease and healthy controls using ATR-FTIR

  • Lara de Andrade Marques1,2,
  • Alinne Tatiane Faria Silva3,
  • Izabella Cristina Costa Ferreira1,2,
  • Letícia Lopes Dantas Santos1,2,
  • Juliana Carvalho Penha Pereira1,4,
  • Donizeti William Santos4,
  • Carlos Eduardo Paiva3,5 &
  • …
  • Yara Cristina de Paiva Maia1,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 764 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biomarkers
  • Cancer
  • Medical research
  • Oncology

Abstract

Breast cancer (BC) ranks among the most prevalent tumors affecting women. This research explores the ability of Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR) to identify different biochemical elements found in bodily fluids such as serum and saliva from individuals with BC, individuals with benign breast disease (BBD), and healthy individuals. A cross-sectional analysis was performed on samples from 73 participants, comprising 31 with BC, 18 with BBD, and 24 healthy subjects, to examine biochemical differences across the groups. The findings indicated that the levels of the biochemical elements nucleic acids, proteins, lipids and glycogen significantly differed among the fluids. Specifically, the wavenumber of 2930 cm− 1 in saliva was capable of statistically differentiating BC patients from BBD patients and healthy controls. In the serum samples, a significant difference was observed at 1295 cm− 1 (p = 0.0014). However, serum collection has some disadvantages such as invasiveness and the need for trained personnel. Wavenumbers in saliva have emerged as potential breast cancer biomarkers, suggesting that this approach could serve as a valuable, noninvasive method and readily available option for breast cancer screening. ATR-FTIR spectroscopy has the potential to pave the way for the investigation of more efficient and less invasive clinical diagnostic methods.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. World Health Organization, Breast cancer (2025, accessed 09 Nov 2025). https://www.who.int/news-room/fact-sheets/detail/breast-cancer#:~:text=Key%20facts,out%20of%20185%20in%202022.

  2. Castells, X. et al. Breast cancer risk after diagnosis by screening mammography of Non proliferative or proliferative benign breast disease: a study from a population-based screening program. Breast Cancer Res. Treat. 149, 237–244. https://doi.org/10.1007/s10549-014-3208-z (2015).

    Google Scholar 

  3. Román, M. et al. Breast density, benign breast disease, and risk of breast cancer over time. Eur. Radiol. 31, 4839–4847. https://doi.org/10.1007/s00330-020-07490-5 (2021).

    Google Scholar 

  4. Iranmakani, S. et al. A review of various modalities in breast imaging: technical aspects and clinical outcomes. Egypt. J. Radiol. Nucl. Med. 51, 1–22. https://doi.org/10.1186/s43055-020-00175-5 (2020).

    Google Scholar 

  5. Bagchi, A., Pramanik, P. & Sarkar, R. A multistage approach to breast cancer classification using histopathology images. Diagnostics 13, 126–149. https://doi.org/10.3390/diagnostics13010126 (2023).

    Google Scholar 

  6. Drukteinis, J. S., Mooney, B. P., Flowers, C. I. & Gatenby, R. A. Beyond mammography: new frontiers in breast cancer screening. Am. J. Med. 126, 472–479. https://doi.org/10.1016/j.amjmed.2012.11.025 (2013).

    Google Scholar 

  7. Depciuch, J. et al. Application of Raman spectroscopy and infrared spectroscopy in the identification of breast cancer. Appl. Spectrosc. 70, 251–263. https://doi.org/10.1177/0003702815620127 (2016).

    Google Scholar 

  8. Tirona, M. T. Breast cancer screening update. Am Fam Phys. 87, 274–278 (2013).

  9. Sherman, M. E. et al. Benign breast disease and breast cancer risk in the percutaneous biopsy era. JAMA Surg. 159, 193–201. https://doi.org/10.1001/jamasurg.2023.6382 (2024).

    Google Scholar 

  10. Francies, F. Z., Hull, R., Khanyile, R. & Dlamini, Z. Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options. Am. J. Cancer Res. 10, 1568–1591 (2020).

  11. Zelig, U. et al. Early detection of breast cancer using total biochemical analysis of peripheral blood components: a preliminary study. BMC Cancer. 15, 1–10. https://doi.org/10.1186/s12885-015-1414-7 (2015).

    Google Scholar 

  12. Siebert, H. C. et al. Blood pH analysis in combination with molecular medical tools in relation to COVID-19 symptoms. Biomedicines 11, 1421–1447. https://doi.org/10.3390/biomedicines11051421 (2023).

    Google Scholar 

  13. Hasegawa, T., Inagaki, K. & Haraguchi, H. Multielement correlation analysis of major-to-trace elements in human blood serum for medical diagnosis as studied by ICP–AES and ICP-MS. Anal. Sci. Suppl. 17, i979–i982. https://doi.org/10.14891/analscisp.17icas.0.i979.0 (2001).

    Google Scholar 

  14. Humphrey, S. P. & Williamson, R. T. A review of saliva: normal composition, flow, and function. JPD 85, 162–169. https://doi.org/10.1067/mpr.2001.113778 (2001).

    Google Scholar 

  15. Kaufman, E. & Lamster, I. B. The diagnostic applications of saliva - a review. Crit. Rev. Oral Biol. Med. 13, 197–212. https://doi.org/10.1177/154411130201300209 (2002).

    Google Scholar 

  16. Elkins, K. M. Rapid presumptive fingerprinting of body fluids and materials by ATR FT-IR spectroscopy. J. Forensic Sci. 56, 1580–1587. https://doi.org/10.1111/j.1556-4029.2011.01870.x (2011).

    Google Scholar 

  17. Simonova, D. & Karamancheva, I. Application of transform infrared spectroscopy for tumor diagnosis. Biotechnol. Biotechnol. Equip. 27, 4200–4207. https://doi.org/10.5504/BBEQ.2013.0106 (2013).

    Google Scholar 

  18. Bunaciu, A. A., Hoang, V. D. & Aboul-Enein, H. Y. Applications of FT-IR spectrophotometry in cancer diagnostics. CRC 45, 156–165. https://doi.org/10.1080/10408347.2014.904733 (2015).

    Google Scholar 

  19. Barth, A. Infrared spectroscopy of proteins. BBA-BIOENER 1767, 1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004 (2007).

    Google Scholar 

  20. Lima, C. A., Goulart, V. P., Correa, L., Pereira, T. M. & Zezell, D. M. ATR-FTIR spectroscopy for the assessment of biochemical changes in skin due to cutaneous squamous cell carcinoma. Int. J. Mol. Sci. 16, 6621–6630. https://doi.org/10.3390/ijms16046621 (2015).

    Google Scholar 

  21. Lane, R. & Seong, S. S. Attenuated total reflectance fourier transform infrared spectroscopy method to differentiate between normal and cancerous breast cells. J. Nanosci. Nanotechnol. 12, 7395–7400. https://doi.org/10.1166/jnn.2012.6582 (2012).

    Google Scholar 

  22. Backhaus, J. et al. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vib. Spectrosc. 52, 173–177. https://doi.org/10.1016/j.vibspec.2010.01.013 (2010).

    Google Scholar 

  23. Ferreira, I. C. C. et al. Attenuated total reflection-fourier transform infrared (ATR-FTIR) spectroscopy analysis of saliva for breast cancer diagnosis. J. Oncol. 2020, 1–11. https://doi.org/10.1155/2020/4343590 (2020).

  24. Banyay, M., Sandbrink, J., Strömberg, R. & Gräslund, A. Characterization of an RNA Bulge structure by fourier transform infrared spectroscopy. BBRC 324, 634–639. https://doi.org/10.1016/j.bbrc.2004.09.098 (2004).

    Google Scholar 

  25. Grube, M., Zagreba, E., Gromozova, E. & Fomina, M. Comparative investigation of the macromolecular composition of mycelia forms Thielavia terrestris by infrared spectroscopy. Vib. Spectrosc. 19, 301–306. https://doi.org/10.1016/S0924-2031(98)00074-5 (1999).

    Google Scholar 

  26. Movasaghi, Z., Rehman, S. & Rehman, D. I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134–179. https://doi.org/10.1080/05704920701829043 (2008).

    Google Scholar 

  27. Fagundes, J. et al. Ribosomal DNA nanoprobes studied by fourier transform infrared spectroscopy. Spectrochim Acta Mol. Biomol. Spectrosc. 118, 28–35. https://doi.org/10.1016/j.saa.2013.08.057 (2014).

    Google Scholar 

  28. Wood, B. R., Quinn, M. A., Burden, F. R. & McNaughton, D. An investigation into FTIR spectroscopy as a biodiagnostic tool for cervical cancer. Biospectroscopy 2, 143–153 (1996).

    Google Scholar 

  29. Kumar, S. R., Chaudhary, S. S. & Jain, D. C. Vibrational studies of different human body disorders using FTIR spectroscopy. Open. J. Appl. Sci. 4, 103–129. https://doi.org/10.4236/ojapps.2014.43012 (2014).

    Google Scholar 

  30. Bel’skaya, L. V., Sarf, E. A. & Makarova, N. A. Use of fourier transform IR spectroscopy for the study of saliva composition. J. Appl. Spectrosc. 85, 445–451. https://doi.org/10.1007/s10812-018-0670-0 (2018).

    Google Scholar 

  31. Bel’Skaya, L. V., Sarf, E. A. & Gundyrev, I. A. Study of the IR spectra of the saliva of cancer patients. J. Appl. Spectrosc. 85, 1076–1084. https://doi.org/10.1007/s10812-019-00762-z (2019).

    Google Scholar 

  32. Zuluaga-Morales, J. S., Bolaños-Carmona, M. V., Cifuentes-Jiménez, C. C. & Álvarez-Lloret, P. Chemical, microstructural and morphological characterization of dentine caries simulation by pH-cycling. Minerals 12, 1–16. https://doi.org/10.3390/min12010005 (2021).

    Google Scholar 

  33. Dong, L. et al. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis. Spectrochim. Acta Mol. Biomol. Spectrosc. 122, 288–294. https://doi.org/10.1016/j.saa.2013.11.031 (2014).

    Google Scholar 

  34. Whiteman, S. C., Yang, Y., Jones, J. M. & Spiteri, M. A. FTIR spectroscopic analysis of sputum: preliminary findings on a potential novel diagnostic marker for COPD. Ther. adv. Respir dis. 2, 23–31. https://doi.org/10.1177/1753465807087972 (2008).

    Google Scholar 

  35. Grdadolnik, J. Saturation effects in FTIR spectroscopy: intensity of amide I and amide II bands in protein spectra. Acta Chim. Slov. 50, 777–788 (2003). https://acta-arhiv.chem-soc.si/50/50-4-777.pdf (accessed 18 July 2025).

    Google Scholar 

  36. Malamud, D. Saliva as a diagnostic fluid. Dent. Clin. North. Am. 55, 159–178. https://doi.org/10.1016/j.cden.2010.08.004 (2011).

    Google Scholar 

  37. Barros, A. C. S. D. Genética e epigenética: bases moleculares Da formação inicial do câncer de Mama. Rev. bras. Mastol. 20, 48–54 (2010). https://revistamastology.emnuvens.com.br/rbm/article/view/15 (accessed 18 July 2025).

    Google Scholar 

  38. Tang, Q., Cheng, J., Cao, X., Surowy, H. & Burwinkel, B. Blood-based DNA methylation as biomarker for breast cancer: a systematic review. Clin. Epigenetics. 8, 1–18. https://doi.org/10.1186/s13148-016-0282-6 (2016).

    Google Scholar 

  39. Salta, S. P. et al. A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. J. Clin. Med. 7, 420–435. https://doi.org/10.3390/jcm7110420 (2018).

    Google Scholar 

  40. Pink, R. et al. Saliva as a diagnostic medium. Biomed. Pap Med. Fac. Univ. Palacky Olomouc Czech Repub. 153, 103–110. https://doi.org/10.5507/bp.2009.017 (2009).

    Google Scholar 

  41. Pfaffe, T., Cooper-White, J., Beyerlein, P., Kostner, K. & Punyadeera, C. Diagnostic potential of saliva: current state and future applications. Clin. Chem. 57, 675–687. https://doi.org/10.1373/clinchem.2010.153767 (2011).

    Google Scholar 

  42. Wang, A., Wang, C. P., Tu, M. & Wong, D. T. W. Oral biofluid biomarker research: current status and emerging frontiers. Diagnostics 6, 1–15. https://doi.org/10.3390/diagnostics6040045 (2016).

    Google Scholar 

  43. Psychogios, N. et al. The human serum metabolome. PloS One. 6, 1–23. https://doi.org/10.1371/journal.pone.0016957 (2011).

    Google Scholar 

  44. Radišauskas, R., Kuzmickienė, I., Milinavičienė, E. & Everatt, R. Hypertension, serum lipids and cancer risk: a review of epidemiological evidence. Med. (Kaunas). 52, 89–98. https://doi.org/10.1016/j.medici.2016.03.002 (2016).

    Google Scholar 

  45. Li, Z. & Kang, Y. Lipid metabolism fuels cancer’s spread. Cell. Metab. 25, 228–230. https://doi.org/10.1016/j.cmet.2017.01.016 (2017).

    Google Scholar 

  46. Navazesh, M. Methods for collecting saliva. Ann. N Y Acad. Sci. 694, 72–77. https://doi.org/10.1111/j.1749-6632.1993.tb18343.x (1993).

    Google Scholar 

  47. Kemp, A. P. T. et al. Risk factors for medication-related osteonecrosis of the jaw and salivary IL-6 in cancer patients. BJORL 88, 683–690. https://doi.org/10.1016/j.bjorl.2020.09.010 (2022).

    Google Scholar 

  48. Sawczuk, B. et al. Salivary gland function, antioxidant defense and oxidative damage in the saliva of patients with breast cancer: does the BRCA1 mutation disturb the salivary redox profile? Cancers 11, 1501–1523. https://doi.org/10.3390/cancers11101501 (2019).

    Google Scholar 

  49. Edge, S. B. et al. AJCC Cancer Staging Manual (7th Ed). (Springer, 2010). https://www.facs.org/media/kwupoct5/ajcc-7th-ed-cancer-staging-manual.pdf.

  50. Andrew, C. K. L. & Kazarian, S. G. Attenuated total reflection fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem. Soc. Rev. 45, 1850–1864. https://doi.org/10.1039/C5CS00515A (2016).

    Google Scholar 

  51. Stuart, B. H. Biological applications. In Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2005).

  52. Martinez-Cuazitl, A. et al. ATR-FTIR spectrum analysis of saliva samples from COVID-19 positive patients. Sci. Rep. 11, 1–14. https://doi.org/10.1038/s41598-021-99529-w (2021).

    Google Scholar 

  53. Demsar, J. et al. Orange: data mining toolbox in python. JMLR 14, 2349 – 2353 (2013).

Download references

Acknowledgements

This work has been supported by the following Brazilian research agencies: CAPES, CNPq and FAPEMIG (Grant number: APQ-01961-23 and REMITRIBIC, RED-00031-21).

Author information

Authors and Affiliations

  1. Molecular Biology and Nutrition Research Group, School of Medicine, Graduate Program in Health Science, Federal University of Uberlandia (UFU), Av. Amazonas sn, Block 2E, 2° Floor, Room 210, Campus Umuarama, Uberlandia, 38405-320, MG, Brazil

    Lara de Andrade Marques, Izabella Cristina Costa Ferreira, Letícia Lopes Dantas Santos, Juliana Carvalho Penha Pereira & Yara Cristina de Paiva Maia

  2. Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlandia (UFU), Av. Amazonas sn, Block 2E, 2° Floor, Room 248, Campus Umuarama, Uberlandia, 38405-320, MG, Brazil

    Lara de Andrade Marques, Izabella Cristina Costa Ferreira, Letícia Lopes Dantas Santos & Yara Cristina de Paiva Maia

  3. Teaching and Research Institute, Barretos Cancer Hospital, R. Antenor Duarte Vilela, 1331, Doutor Paulo Prata, Barretos, 14784-400, SP, Brazil

    Alinne Tatiane Faria Silva & Carlos Eduardo Paiva

  4. Oncology Division, Gynecology Department, University Hospital, Federal University of Uberlandia (UFU), Av. Pará, 1720, Block 2H, Campus Umuarama, Uberlandia, 38405-320, MG, Brazil

    Juliana Carvalho Penha Pereira & Donizeti William Santos

  5. Department of Oncology, Queen’s Health Sciences, Queen’s University, 25 King St W, ON, K7L 5P9, Kingston, Canada

    Carlos Eduardo Paiva

Authors
  1. Lara de Andrade Marques
    View author publications

    Search author on:PubMed Google Scholar

  2. Alinne Tatiane Faria Silva
    View author publications

    Search author on:PubMed Google Scholar

  3. Izabella Cristina Costa Ferreira
    View author publications

    Search author on:PubMed Google Scholar

  4. Letícia Lopes Dantas Santos
    View author publications

    Search author on:PubMed Google Scholar

  5. Juliana Carvalho Penha Pereira
    View author publications

    Search author on:PubMed Google Scholar

  6. Donizeti William Santos
    View author publications

    Search author on:PubMed Google Scholar

  7. Carlos Eduardo Paiva
    View author publications

    Search author on:PubMed Google Scholar

  8. Yara Cristina de Paiva Maia
    View author publications

    Search author on:PubMed Google Scholar

Contributions

LAM: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Original DraftATFS: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Review & EditingICCF: Conceptualization, Methodology, Investigation, Writing - Review & EditingLLDS: Formal analysis, InvestigationJCPP: InvestigationDWS: InvestigationCEP: Conceptualization, SupervisionYCPM: Conceptualization, Methodology, Validation, Writing - Review & Editing, Supervision, Project administration.

Corresponding author

Correspondence to Yara Cristina de Paiva Maia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade Marques, L., Silva, A.T.F., Ferreira, I.C.C. et al. Comparative spectral analysis of blood and saliva in breast cancer, benign breast disease and healthy controls using ATR-FTIR. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39097-z

Download citation

  • Received: 19 August 2025

  • Accepted: 02 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39097-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Biomarkers
  • DNA fingerprinting
  • Nucleic acids
  • Lipids
  • Serum
  • Saliva
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer