Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Machine learning model provides stress biomarkers for the classification of abiotic stress in Micro-Tom
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 February 2026

Machine learning model provides stress biomarkers for the classification of abiotic stress in Micro-Tom

  • Laura Matos Ribera1,
  • Gilmar da Silveira Sousa Junior2,
  • Mariana Dias Meneses3,
  • Efraim Pereira Pimenta1,
  • Glauco de Souza Rolim3,
  • Ricardo Antunes de Azevedo4 &
  • …
  • Priscila Lupino Gratão1 

Scientific Reports , Article number:  (2026) Cite this article

  • 444 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Environmental sciences
  • Plant sciences

Abstract

Water deficit, salinity, and cadmium (Cd) contamination have generated an environmental problem worldwide, leading to damages to plant growth due to alteration in their metabolism. This study aimed to classify enzymatic and non-enzymatic antioxidant systems in Micro-Tom (MT) plants when subjected to two intensities (moderate and severe) of water deficit, salinity, and Cd exposure. The experimental design was a completely randomized 3 × 2 factorial, with the first factor representing the stress agents (water deficit, salinity, and Cd) and the second factor indicating stress intensities (moderate and severe), along with a control group. After an acclimation period, plants were exposed to 10 days of stress. Water deficit treatments were imposed using solutions adjusted to osmotic potentials of − 0.40 MPa and − 1.00 MPa; salinity stress was established with nutrient solutions containing 40 mM or 120 mM NaCl; and Cd stress was induced using nutrient solutions with 0.25 mM or 0.5 mM CdCl₂. Laboratory analyses included lipid peroxidation, hydrogen peroxide content, proline accumulation, protein quantification, and enzyme extraction. Descriptive analyses, and a Spearman’s correlation, identified the behavior of enzymatic and non-enzymatic systems for each stress agents and intensities, enabling the selection of key influencing factors. A factorial analysis of variance was performed to assess the mean differences among the treatments (α = 0.05) for enzymatic, non-enzymatic systems, MDA and, H₂O₂. Using this data, a decision tree model classified the stresses into four levels: low, low-medium, medium-high, and high. Variations in antioxidant response and stress biomarkers were detailed, with proline and superoxide dismutase identified as the primary variables of significance across stress indicators. Furthermore, the model achieved robust classification performance with Matthew’s correlation coefficients exceeding 0.80 in the extreme classes; however, it encountered limitations in distinguishing between classes with closely proximate values. The findings indicate the capability of the decision tree to classify stress levels in plants.

Data availability

All data are available in the manuscript. The raw data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Contreras-Cornejo, H. A. et al. Abiotic plant stress mitigation by trichoderma species. Soil. Ecol. Lett. 6, 240240 (2024).

    Google Scholar 

  2. Chiconato, D. A., da Silveira Sousa Junior, G., dos Santos, D. M. M. & Munns, R. Adaptation of sugarcane plants to saline soil. Environ. Exp. Bot. 162, 201–211 (2019).

    Google Scholar 

  3. Alves, L. R. et al. Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicology 29, 594–606 (2020).

    Google Scholar 

  4. Seleiman, M. F. et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10, 259 (2021).

    Google Scholar 

  5. Akbari, M., Sabouri, H., Sajadi, S. J., Yarahmadi, S. & Ahangar, L. Classification and prediction of drought and salinity stress tolerance in barley using GenPhenML. Sci. Rep. 14, 17420 (2024).

    Google Scholar 

  6. Yang, X. et al. Response mechanism of plants to drought stress. Horticulturae 7, 50 (2021).

    Google Scholar 

  7. Montesinos, C. et al. Avaliação e caracterização Em Campo de Um Novo bioestimulante Para o cultivo de brócolis (Brassica Oleracea var. italica) Sob estresse hídrico e Salino Que aumenta o conteúdo de antioxidantes, Glucosinolatos e fitohormônios. Sci. Hort. 338, 113584 (2024).

    Google Scholar 

  8. Gisbert, C., Timoneda, A., Porcel, R., Ros, R. & Mulet, J. M. Overexpression of BvHb2, a class 2 non-symbiotic hemoglobin from sugar beet, confers drought-induced withering resistance and alters iron content in tomato. Agronomy 10, 1754 (2020).

    Google Scholar 

  9. Patel, M., Fatnani, D. & Parida, A. K. Mitigação do estresse hídrico induzida por silício em genótipos de amendoim (Arachis hypogaea L.) por meio da homeostase iônica, modulações do sistema de defesa antioxidante e regulações metabólicas. Plant Physiol. Biochem. 166, 290–313 (2021).

    Google Scholar 

  10. Behtash, F., Amini, T., Mousavi, S. B., Hajizadeh, S. & Kaya, O. Efficiency of zinc in alleviating cadmium toxicity in hydroponically grown lettuce (Lactuca sativa L. cv. Ferdos). BMC Plant Biol. 24, 648 (2024).

    Google Scholar 

  11. Rezaie, N., Razzaghi, F. & Sepaskhah, A. R. Different levels of irrigation water salinity and biochar influence on faba bean yield, water productivity, and ions uptake. Commun. Soil Sci. Plant Anal. 50, 611–626 (2019).

    Google Scholar 

  12. Saddiq, M. S. et al. Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11, 1193 (2021).

    Google Scholar 

  13. Spormann, S., Soares, C., Azenha, M., Martins, V. & Fidalgo, F. A look into osmotic, ionic, and redox adjustments in wild tomato species under combined salt and water stress. Plant. Stress. 13, 100510 (2024).

    Google Scholar 

  14. Riaz, M. et al. O fornecimento de boro alivia a toxicidade do cádmio no arroz (Oryza sativa L.) aumentando a adsorção de cádmio na parede celular e ativando o sistema de defesa antioxidante nas raízes. Chemosphere 266, 128938 (2021).

    Google Scholar 

  15. Anwar, T., Qureshi, H., Jabeen, M., Zaman, W. & Ali, H. M. Mitigation of cadmium-induced stress in maize via synergistic application of biochar and gibberellic acid to enhance morpho-physiological and biochemical traits. BMC Plant Biol. 24, 192 (2024).

    Google Scholar 

  16. Zhang, Q. et al. Defense guard: strategies of plants in the fight against cadmium stress. Adv. Biotechnol. 2, 44 (2024).

    Google Scholar 

  17. Zulfiqar, U. et al. Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils: A comprehensive review. Front Plant. Sci 13 (2022).

  18. Zhang, Y. et al. SlPHL1, a MYB-CC transcription factor identified from tomato, positively regulates the phosphate starvation response. Physiol. Plant. 173, 1063–1077 (2021).

    Google Scholar 

  19. Çelik, Ö., Ayan, A. & Atak, Ç. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Bot. Stud. 58, 32 (2017).

    Google Scholar 

  20. Caverzan, A. et al. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35, 1011–1019 (2012).

    Google Scholar 

  21. Soares, C., Carvalho, M. E. A., Azevedo, R. A. & Fidalgo, F. Plants facing oxidative challenges: a little help from the antioxidant networks. Environ. Exp. Bot. 161, 4–25 (2019).

    Google Scholar 

  22. Gratão, P. L. et al. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28, 803–816 (2015).

    Google Scholar 

  23. Todaka, D. et al. Application of ethanol alleviates heat damage to leaf growth and yield in tomato. Front Plant. Sci 15 (2024).

  24. Sun, H. J., Uchii, S., Watanabe, S. & Ezura, H. A. Highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol. 47, 426–431 (2006).

    Google Scholar 

  25. Yan, M. et al. The involvement of abscisic acid in hydrogen gas-enhanced drought resistance in tomato seedlings. Sci. Hort. 292, 110631 (2022).

    Google Scholar 

  26. Yang, R. et al. Strigolactones are involved in hydrogen sulfide-enhanced salt tolerance in tomato seedlings. Plant. Stress. 11, 100316 (2024).

    Google Scholar 

  27. Machado, J. et al. Enzymatic and Non-Enzymatic antioxidant responses of young tomato plants (cv. Micro-Tom) to single and combined mild nitrogen and water deficit: not the sum of the parts. Antioxidants 12, 375 (2023).

    Google Scholar 

  28. Chu, Z. et al. Linking phytohormones with growth, transport activity and metabolic responses to cadmium in tomato. Plant. Growth Regul. 90, 557–569 (2020).

    Google Scholar 

  29. Sandhu, K., Patil, S. S., Pumphrey, M. & Carter, A. Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program. Plant. Genome. 14, e20119 (2021).

    Google Scholar 

  30. Madhumitaa, P. S., Ragavi, C., Kiranmayi, C. & Prabhavathy, P. M, V. Drought and Salinity Stress Classification in Soyabean Crops: Comparative Analysis of Machine Learning Models. In International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), 1–5 (2024). https://doi.org/10.1109/IConSCEPT61884.2024.10627854

  31. Oshternian, S. R., Loipfinger, S., Bhattacharya, A. & Fehrmann, R. S. N. Exploring combinations of dimensionality reduction, transfer learning, and regularization methods for predicting binary phenotypes with transcriptomic data. BMC Bioinform. 25, 167 (2024).

    Google Scholar 

  32. Sarker, I. H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2, 160 (2021).

    Google Scholar 

  33. Houetohossou, S. C. A., Houndji, V. R., Hounmenou, C. G., Sikirou, R. & Kakaï, R. L. G. Deep learning methods for biotic and abiotic stresses detection and classification in fruits and vegetables: state of the art and perspectives. Artif. Intell. Agric. 9, 46–60 (2023).

    Google Scholar 

  34. Xu, L., Liu, H., Mittler, R. & Shabala, S. Useful or merely convenient: can enzymatic antioxidant activity be used as a proxy for abiotic stress tolerance? J. Exp. Bot. 76, 1524–1533 (2025).

    Google Scholar 

  35. Patel, J. et al. UV-C-induced reactive carbonyl species are better detoxified in the halophytic plants Salicornia brachiata and Arthrocnemum macrostachyum than in the halophytic Sarcocornia fruticosa plants. Plant J. 122, e70239 (2025).

    Google Scholar 

  36. Sana, S. et al. Differential responses of Chili varieties grown under cadmium stress. BMC Plant Biol. 24, 7 (2024).

    Google Scholar 

  37. Sultana, M. S., Sakurai, C., Biswas, M. S., Szabados, L. & Mano, J. Accumulation of reactive carbonyl species in roots as the primary cause of salt stress-induced growth retardation of Arabidopsis thaliana. https://doi.org/10.1111/ppl.14198.

  38. Rabêlo, F. H. S. et al. Adequate S supply reduces the damage of high cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. Environ. Exp. Bot. 148, 35–46 (2018).

    Google Scholar 

  39. Chen, L. et al. Gene identification and transcriptome analysis of cadmium stress in tomato. Front. Sustain. Food Syst. 7, 1–11 (2023).

    Google Scholar 

  40. Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F. & Khan, F. A. Proline Accumulation in Plants: Roles in Stress Tolerance and Plant Development. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies (eds Iqbal, N., Nazar, R. & A. Khan, N.) 155–166 (Springer India, New Delhi, 2016). https://doi.org/10.1007/978-81-322-2616-1_9

  41. Hayat, S. et al. Role of proline under changing environments: Uma revisão. Plant Signal. Behav. 7, 1456–1466 (2012).

    Google Scholar 

  42. López-Gómez, M., Hidalgo-Castellanos, J., Iribarne, C. & Lluch, C. Proline accumulation has prevalence over polyamines in nodules of medicago sativa in symbiosis with Sinorhizobium meliloti during the initial response to salinity. Plant. Soil. 374, 149–159 (2014).

    Google Scholar 

  43. Hosseinifard, M. et al. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. Int. J. Mol. Sci. 23, 5186 (2022).

    Google Scholar 

  44. Guan, C. et al. Proline biosynthesis enzyme genes confer salt tolerance to Switchgrass (Panicum virgatum L.) in Cooperation with polyamines metabolism. Front. Plant. Sci. 11, 1–14 (2020).

    Google Scholar 

  45. Souri, Z., Khanna, K., Karimi, N. & Ahmad, P. Silicon and plants: current knowledge and future prospects. J. Plant. Growth Regul. 40, 906–925 (2021).

    Google Scholar 

  46. Peña Calzada, K. et al. Regulatory role of silicon on growth, potassium uptake, ionic homeostasis, proline accumulation, and antioxidant capacity of soybean plants under salt stress. J. Plant. Growth Regul. 42, 4528–4540 (2023).

    Google Scholar 

  47. Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21, 6 (2020).

    Google Scholar 

  48. de Barros, M. M., Silva, F. M., da Costa, A. G., Ferraz, G. A. & da Silva, F. C. S. Use of classifier to determine coffee harvest time by detachment force. Rev. bras. Eng. Agríc. Ambient. 22, 366–370 (2018).

    Google Scholar 

  49. Amoah, J. & Berko, D. Impact of salinity stress on membrane status, phytohormones, antioxidant defense system and transcript expression pattern of two contrasting sorghum genotypes. Egypt. J. Agron. 42, 123–136 (2020).

    Google Scholar 

  50. Gharsallah, C., Fakhfakh, H., Grubb, D. & Gorsane, F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB PLANTS. 8, plw055 (2016).

    Google Scholar 

  51. Jakovljević, D. Z., Topuzović, M. D., Stanković, M. S. & Bojović, B. M. Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet Basil. Hortic. Environ. Biotechnol. 58, 240–246 (2017).

    Google Scholar 

  52. Mura, A. et al. Catalytic pathways of Euphorbia characias peroxidase reacting with hydrogen peroxide. 387, 559–567 (2006).

  53. Manai, J., Gouia, H. & Corpas, F. J. A homeostase redox e do óxido nítrico é afetada em raízes de tomateiro (Solanum lycopersicum) sob estresse oxidativo induzido pela salinidade. J. Plant Physiol. 171, 1028–1035 (2014).

    Google Scholar 

  54. Murshed, R., Lopez-Lauri, F. & Sallanon, H. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Micro-tom). Physiol. Mol. Biol. Plants 19, 363–378 (2013).

    Google Scholar 

  55. El-Beltagi, H. S., Mohamed, H. I. & Sofy, M. R. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules 25, 1702 (2020).

    Google Scholar 

  56. Gratão, P. l., Monteiro, C. c., Antunes, A. m., Peres, L. e. & Azevedo, R. a. Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann. Appl. Biol. 153, 321–333 (2008).

    Google Scholar 

  57. Hoagland, D. R. & Arnon, D. J. The Water-Culture Method for Growing Plants without Soil. vol. 347 (Arnon, D. I. & California Agricultural Experiment Station, California Agricultural Experiment Station- Berkeley, 1950).

  58. Pino-Nunes, L. Obtenção e uso de mutantes com alterações no balanço auxina/citocinina no estudo da competência organogênica em micro-tomateiro (Lycopersicon esculentum cv Micro-Tom) (Universidade de São Paulo, 2005).

  59. Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).

    Google Scholar 

  60. Gratão, P. L. et al. Dissecação bioquímica de mutantes de tomate Diageotropica e Never mature em condições estressantes de cd. Plant Physiol. Biochem. 56, 79–96 (2012).

    Google Scholar 

  61. Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant. Cell. Environ. 24, 1337–1344 (2001).

    Google Scholar 

  62. Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant. Soil. 39, 205–207 (1973).

    Google Scholar 

  63. Azevedo, R. A., Alas, R. M., Smith, R. J. & Lea, P. J. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and Ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol. Plant. 104, 280–292 (1998).

    Google Scholar 

  64. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

  65. Giannopolitis, C. N. & Ries, S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309–314 (1977).

    Google Scholar 

  66. Kraus, T. E., McKersie, B. D. & Fletcher, R. A. Paclobutrazol-induced Tolerance of Wheat Leaves to Paraquat May Involve Increased Antioxidant Enzyme Activity. J. Plant Physiol. 145, 570–576 (1995).

    Google Scholar 

  67. Flohé, L. & Günzler, W. A. [12] Assays of glutathione peroxidase. In Methods in Enzymology Vol. 105 114–120 (Academic, 1984).

    Google Scholar 

  68. Nagalakshmi, N. & Prasad, M. N. V. Respostas das enzimas do ciclo da glutationa e do metabolismo da glutationa ao estresse de cobre em Scenedesmus bijugatus. Plant Sci. 160, 291–299 (2001).

    Google Scholar 

  69. Ozarda, Y. Reference intervals: current status, recent developments and future considerations. Biochem. Med. 26, 5–11 (2016).

    Google Scholar 

  70. Krzywinski, M. & Altman, N. Classification and regression trees. Nat. Methods. 14, 757–758 (2017).

    Google Scholar 

  71. Seliya, N., Khoshgoftaar, T. M. & Van Hulse, J. A study on the relationships of classifier performance metrics. In 2009 21st IEEE International Conference on Tools with Artificial Intelligence, 59-66 https://doi.org/10.1109/ICTAI.2009.25 (2009).

Download references

Acknowledgements

To the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001 for financial support through the PhD scholarship, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the postdoctoral scholarship, funding code 150129/2022-0.

Funding

There was no funding contribution to this work.

Author information

Authors and Affiliations

  1. Department of Biology Applied to Agriculture, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, São Paulo, 14884900, Brazil

    Laura Matos Ribera, Efraim Pereira Pimenta & Priscila Lupino Gratão

  2. Instituto Municipal de Ensino Superior Victório Cardassi (Imesb), Rua Nelson Domingos Madeira, 300 - Parque Eldorado, Bebedouro, São Paulo, 14706-124, Brazil

    Gilmar da Silveira Sousa Junior

  3. Department of Mathematical Sciences, São Paulo State University (UNESP), Access Road Prof. Paulo Donato Castellane, Jaboticabal, 14884-900, SP, Brazil

    Mariana Dias Meneses & Glauco de Souza Rolim

  4. Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av. Pádua Dias, 11, CP. 83, Piracicaba, 13418-900, Brazil

    Ricardo Antunes de Azevedo

Authors
  1. Laura Matos Ribera
    View author publications

    Search author on:PubMed Google Scholar

  2. Gilmar da Silveira Sousa Junior
    View author publications

    Search author on:PubMed Google Scholar

  3. Mariana Dias Meneses
    View author publications

    Search author on:PubMed Google Scholar

  4. Efraim Pereira Pimenta
    View author publications

    Search author on:PubMed Google Scholar

  5. Glauco de Souza Rolim
    View author publications

    Search author on:PubMed Google Scholar

  6. Ricardo Antunes de Azevedo
    View author publications

    Search author on:PubMed Google Scholar

  7. Priscila Lupino Gratão
    View author publications

    Search author on:PubMed Google Scholar

Contributions

LMR, GSSJ and EPP designed the experiments. LMR, GSSJ and EPP performed the experiments. LMR, MDM and GSR analyzed the data. LMR, GSSJ and MDM wrote the manuscript (original draft, review and editing). GSR, RAA, PLG reviewed the manuscript, and all authors accepted the final version of the manuscript.

Corresponding author

Correspondence to Priscila Lupino Gratão.

Ethics declarations

Competing interests

The authors declare no competing interests.

Generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used the ChatGPT 3.5 in order to impro readability and language. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribera, L.M., da Silveira Sousa Junior, G., Meneses, M.D. et al. Machine learning model provides stress biomarkers for the classification of abiotic stress in Micro-Tom. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39117-y

Download citation

  • Received: 28 July 2025

  • Accepted: 03 February 2026

  • Published: 06 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39117-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Artificial intelligence
  • Decision tree
  • Enzymatic system
  • Reactive oxygen species
  • Solanum lycorpesicum L.
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing