Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Candida albicans infection suppresses lipopolysaccharide or Pseudomonas aeruginosa stimulated murine bone marrow derived macrophage (BMDM) responses
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 February 2026

Candida albicans infection suppresses lipopolysaccharide or Pseudomonas aeruginosa stimulated murine bone marrow derived macrophage (BMDM) responses

  • Christa P. Baker1,
  • Stephanie Laba1,
  • Jordan Warner1,
  • Karen Shepherd1,
  • Heather M. Wilson2 &
  • …
  • J. Simon C. Arthur1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Infection
  • Innate immune cells
  • Innate immunity

Abstract

Candida albicans is an opportunistic human pathogen, that commonly causes localised infection of mucosal surfaces. Candida can also cause systemic infections, which remain difficult to treat and have a high risk of mortality. The immune response to C. albicans infection is complex and can be influenced by the surrounding microenvironment, for example, metabolic stresses or co-infection. Macrophages are a key immune cell in defence against C. albicans infection through phagocytosis of C. albicans and cytokine production to co-ordinate immune responses. Here, we utilise Data Independent Acquisition (DIA) based total proteomics to describe the murine bone marrow derived macrophage (BMDM) response to C. albicans infection as well as in response to co-infection with gram-negative bacterial outer membrane component lipopolysaccharide (LPS) or the gram-negative bacteria Pseudomonas aeruginosa. We found C. albicans induced a surprisingly muted immune response in BMDMs as compared to LPS or P. aeruginosa. Moreover, upon co-infection with LPS or P. aeruginosa, C. albicans suppressed P. aeruginosa and LPS induced IL-6 and IL-12p40 secretion as well as dampening proteomic remodelling in the macrophage in response to these agents. Thus, C. albicans has significant suppressive capabilities in the host innate immune responses that could impact clinical outcomes during infection.

Data availability

Mass spectrometry data has been deposited in PRIDE , under accession number PXD062689. Full scans of immunoblots are available in the supplementary data. Other data is available on request from the corresponding author.

References

  1. Denning, D. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).

    Google Scholar 

  2. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl Med. 4, 1–9 (2012).

    Google Scholar 

  3. Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 20, 133–163 (2007).

    Google Scholar 

  4. Cleveland, A. A. et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008–2013: results from population-based surveillance. PLoS One. 10, 2008–2013 (2015).

    Google Scholar 

  5. Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L. & Kullberg, B. J. Invasive candidiasis. Nat. Rev. Dis. Primers. 4, 1–20 (2018).

    Google Scholar 

  6. Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    Google Scholar 

  7. Cowen, L. E. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6, 187–198 (2008).

    Google Scholar 

  8. Cannon, R. D. et al. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22, 291–321 (2009).

    Google Scholar 

  9. Khandelwal, N. K. et al. Vacuolar sequestration of Azoles, a novel strategy of Azole antifungal resistance conserved across pathogenic and nonpathogenic yeast. Antimicrob. Agents Chemother. 63, e01347–e01318 (2019).

    Google Scholar 

  10. Katragkou, A. et al. In vitro combination therapy with isavuconazole against Candida spp. Med. Mycol. 55, 859–868 (2017).

    Google Scholar 

  11. Costa-de-oliveira, S. & Rodrigues, A. G. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms 8, 154–173 (2020).

    Google Scholar 

  12. Sudbery, P. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9, 737–748 (2011).

    Google Scholar 

  13. Duggan, S., Leonhardt, I., Hünniger, K. & Kurzai, O. Host response to Candida albicans bloodstream infection and sepsis. Virulence 6, 316–326 (2015).

    Google Scholar 

  14. Olivier, F. A. B. et al. The escape of Candida albicans from macrophages is enabled by the fungal toxin Candidalysin and two host cell death pathways. Cell. Rep. 40, 111374 (2022).

    Google Scholar 

  15. Wheeler, M. L., Limon, J. J. & Underhill, D. M. Immunity to commensal fungi: detente and disease. Annu. Rev. Pathol. 12, 359–385 (2017).

    Google Scholar 

  16. Kubota, Y. et al. Role of alveolar macrophages in Candida-induced acute lung injury. Clin. Diagn. Lab. Immunol. 8, 1258–1262 (2001).

    Google Scholar 

  17. Netea, M. G., Joosten, L. A. B., Van Der Meer, J. W. M., Kullberg, B. J. & Van De Veerdonk, F. L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15, 630–642 (2015).

    Google Scholar 

  18. Qian, Q., Jutila, M. A. & Van Rooijen, N. Elimination of mouse Splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J. Immunol. 152, 5000–5008 (1994).

    Google Scholar 

  19. Lionakis, M. S. et al. CX 3 CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Clin. Invest. 123, 5035–5051 (2013).

    Google Scholar 

  20. Teo, Y. J. et al. Renal CD169 + + resident macrophages are crucial for protection against acute systemic candidiasis. Life Sci. Alliance. 4, 1–14 (2021).

    Google Scholar 

  21. Lewis, L. E. et al. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog. 8, (2012).

  22. Erwig, L. P. & Gow, N. A. R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176 (2016).

    Google Scholar 

  23. Uwamahoro, N. et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio 5, (2014).

  24. Brown, G. D. et al. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 (2002).

    Google Scholar 

  25. Gow, N. A. R. et al. Immune recognition of Candida albicans ␤ -glucan by Dectin-1. J. Infect. Dis. 196, 1565–1571 (2007).

    Google Scholar 

  26. Hatinguais, R., Willment, J. A. & Brown, G. D. PAMPs of the fungal cell wall and mammalian PRRs. Curr. Top. Microbiol. Immunol. 425, 187–223 (2020).

    Google Scholar 

  27. Lobato-Pascual, A., Saether, P. C., Fossum, S., Dissen, E. & Daws, M. R. Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcεRI-γ. Eur. J. Immunol. 43, 3167–3174 (2013).

    Google Scholar 

  28. Becker, K. L., Ifrim, D. C., Quintin, J. & Netea, M. G. Veerdonk, F. L. Antifungal innate immunity: recognition and inflammatory networks. Semin Immunopathol. 37, 107–116 (2015). van de.

    Google Scholar 

  29. Bugarcic, A. et al. Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 18, 679–685 (2008).

    Google Scholar 

  30. Jouault, T. et al. Candida albicans phospholipomannan is sensed through toll-like receptors. J. Infect. Dis. 188, 165–172 (2003).

    Google Scholar 

  31. Choteau, L. et al. Role of TLR1, TLR2 and TLR6 in the modulation of intestinal inflammation and Candida albicans elimination. Gut Pathog. 9, 1–13 (2017).

    Google Scholar 

  32. Tada, H. et al. Saccharomyces cerevisiae- and Candida albicans-derived Mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol. Immunol. 46, 503–512 (2002).

    Google Scholar 

  33. Netea, M. G. et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185, 1483–1489 (2002).

    Google Scholar 

  34. Dalpke, A. H., Helm, M., Dalpke, A. H. & Helm, M. RNA mediated toll-like receptor stimulation in health and disease. RNA Biol. 9, 828–842 (2012).

    Google Scholar 

  35. Hardison, S. E. & Brown, G. D. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 13, 817–822 (2012).

    Google Scholar 

  36. Uribe-Querol, E., Rosales, C. & Phagocytosis Our current Understanding of a universal biological process. Front. Immunol. 11, 1–13 (2020).

    Google Scholar 

  37. Wells, C. A. et al. MINCLE is an essential component of the innate immune response to C.albicans. J. Immunol. 180, 7404–7413 (2008).

    Google Scholar 

  38. Zhu, L. et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    Google Scholar 

  39. Keppler-Ross, S., Douglas, L., Konopka, J. B. & Dean, N. Recognition of yeast by murine macrophages requires Mannan but not glucan. Eukaryot. Cell. 9, 1776–1787 (2010).

    Google Scholar 

  40. Cohen, P. The TLR and IL-1 signalling network at a glance. J. Cell. Sci. 127, 2383–2390 (2014).

    Google Scholar 

  41. Bi, L. et al. CARD9 mediates dectin-2-induced IκBα kinase ubiquitination leading to activation of NF-κB in response to stimulation by the hyphal form of Candida albicans. J. Biol. Chem. 285, 25969–25977 (2010).

    Google Scholar 

  42. Gantner, B. N., Simmons, R. M. & Underhill, D. M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–1286 (2005).

    Google Scholar 

  43. Gay, N. J., Symmons, M. F., Gangloff, M. & Bryant, C. E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14, 546–558 (2014).

    Google Scholar 

  44. Kasperkovitz, P. V. et al. Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect. Immun. 79, 4858–4867 (2011).

    Google Scholar 

  45. Bain, J. M. et al. Candida albicans hypha formation and Mannan masking of β-Glucan inhibit macrophage phagosome maturation. mBio 5, 1–17 (2014).

    Google Scholar 

  46. Davis, S. E. et al. Masking of β(1–3)-glucan in the cell wall of Candida albicans from detection by innate immune cells depends on phosphatidylserine. Infect. Immun. 82, 4405–4413 (2014).

    Google Scholar 

  47. de Assis, L. J. et al. Nature of b-1,3-glucan-exposing features on Candida albicans cell wall and their modulation. mBio 13, (2022).

  48. Rogiers, O., Kucharíková, S. R., MAvan, L. & Gv., Dijck, P. & A, W. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans Hyphae. mBio 10, e02221-18 (2019).

  49. Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 in Fl ammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).

    Google Scholar 

  50. Russell, C. M. et al. Connecting the pore forming mechanism of this virulence factor to its immunostimulatory properties. J. Biol. Chem. 299, 102829 (2023).

    Google Scholar 

  51. Gow, N. A. R. & Hube, B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol. 15, 406–412 (2012).

    Google Scholar 

  52. Todd, O. A. et al. Candida albicans augments Staphylococcus aureus virulence by engaging the Staphylococcal Agr quorum sensing system. mBio 10, 1–16 (2019).

    Google Scholar 

  53. Hughes, W. T. Mycoflora in cystic fibrosis: some Ecologic aspects of Pseudomonas aeruginosa and Candida albicans. Mycopathol Mycol. Appl. 50, 261–269 (1973).

    Google Scholar 

  54. Haiko, J., Saeedi, B., Bagger, G., Karpati, F. & Özenci, V. Coexistence of Candida species and bacteria in patients with cystic fibrosis. Eur. J. Clin. Microbiol. Infect. Dis. 38, 1071–1077 (2019).

    Google Scholar 

  55. Bergeron, A. C. et al. Candida albicans and Pseudomonas aeruginosa interact to enhance virulence of mucosal infection in transparent zebrafish. Infect. Immun. 85, 1–18 (2017).

    Google Scholar 

  56. Lopez-Medina, E. et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of Pyochelin and Pyoverdine biosynthesis. PLoS Pathog. 11 (2015).

  57. Salvatori, O. et al. Bacteria modify Candida albicans hypha formation, microcolony properties, and survival within macrophages. mSphere 5 (2020).

  58. Elcombe, S. E. et al. Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers. PLoS One. 8, e60086 (2013).

    Google Scholar 

  59. Brown, G. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    Google Scholar 

  60. Zheng, X., Wang, Y. & Wang, Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23, 1845–1856 (2004).

    Google Scholar 

  61. Amato, S. F., Nakajima, K., Hirano, T. & Chiles, T. C. Transcriptional regulation of the JunB promoter in mature B lymphocytes. Activation through a Cyclic adenosine 3’,5’-monophosphate-like binding site. J. Immunol. 157, 146–155 (1996).

    Google Scholar 

  62. Mayer, S. I., Dexheimer, V., Nishida, E., Kitajima, S. & Thiel, G. Expression of the transcriptional repressor ATF3 in gonadotrophs is regulated by Egr-1, CREB, and ATF2 after gonadotropin-releasing hormone receptor stimulation. Endocrinology 149, 6311–6325 (2008).

    Google Scholar 

  63. Astarci, E., Sade, A., Çimen, I., Savaş, B. & Banerjee, S. The NF-κB target genes ICAM-1 and VCAM-1 are differentially regulated during spontaneous differentiation of Caco-2 cells. FEBS J. 279, 2966–2986 (2012).

    Google Scholar 

  64. Melotti, P. et al. Activation of NF-kB mediates ICAM-1 induction in respiratory cells exposed to an adenovirus-derived vector. Gene Ther. 8, 1436–1442 (2001).

    Google Scholar 

  65. Darragh, J., Ananieva, O., Courtney, A., Elcombe, S. & Arthur, J. S. C. MSK1 regulates the transcription of IL-1ra in response to TLR activation in macrophages. Biochem. J. 425, 595–602 (2010).

    Google Scholar 

  66. Chen, C. C. et al. NF-κB-mediated transcriptional upregulation of TNFAIP2 by the Epstein-Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene 33, 3648–3659 (2014).

    Google Scholar 

  67. Sohn, W. J. et al. Novel transcriptional regulation of the schlafen-2 gene in macrophages in response to TLR-triggered stimulation. Mol. Immunol. 44, 3273–3282 (2007).

    Google Scholar 

  68. Ungefroren, H. & Krull, N. B. Transcriptional regulation of the human Biglycan gene. J. Biol. Chem. 271, 15787–15795 (1996).

    Google Scholar 

  69. Mencacci, A., Fé d’Ostiani, C., Mosci, P., Trinchieri, G., Adorini, L. & E, C., G, D. S. &,, , R. IL-10 is required for development of protective Th1 responses in IL-12-deficient mice upon Candida albicans infection. J. Immunol. 161, 6228–6237 (1998).

    Google Scholar 

  70. Van Enckevort, F. H. J. et al. Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice. Med. Mycol. 37, 419–426 (1999).

    Google Scholar 

  71. Vazquez-Torres, A., Jones-Carson, J., Warner, T. & Balish, E. Nitric oxide enhances resistance of Scid mice to mucosal candidiasis. J. Infect. Dis. 172, 192–198 (1995).

    Google Scholar 

  72. Collette, J. R., Zhou, H. & Lorenz, M. C. Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule. PLoS One. 9, e96203 (2014).

    Google Scholar 

  73. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Google Scholar 

  74. Whitmore, M. M. et al. Negative regulation of TLR-Signaling pathways by activating transcription Factor-3. J. Immunol. 179, 3622–3630 (2007).

    Google Scholar 

  75. Jung, D. H. et al. Involvement of ATF3 in the negative regulation of iNOS expression and NO production in activated macrophages. Immunol. Res. 62, 35–45 (2015).

    Google Scholar 

  76. Thompson, M. R., Xu, D. & Williams, B. R. G. ATF3 transcription factor and its emerging roles in immunity and cancer. J. Mol. Med. 87, 1053–1060 (2009).

    Google Scholar 

  77. Fontana, M. F. et al. JUNB is a key transcriptional modulator of macrophage activation. J. Immnology. 176, 100–106 (2016).

    Google Scholar 

  78. Bambouskova, M. et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell. Rep. 34, 108756 (2021).

    Google Scholar 

  79. Lampropoulou, V. et al. Itaconate links Inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell. Metab. 24, 158–166 (2016).

    Google Scholar 

  80. O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).

    Google Scholar 

  81. Hooftman, A. et al. The Immunomodulatory metabolite Itaconate modifies NLRP3 and inhibits inflammasome activation. Cell. Metab. 32, 468–478e7 (2020).

    Google Scholar 

  82. Westman, J. et al. Lysosome fusion maintains phagosome integrity during fungal infection. Cell. Host Microbe. 28, 798–812e6 (2020).

    Google Scholar 

  83. Bain, J. M., Alonso, M. F., Childers, D. S., Walls, C. A. & Mackenzie, K. Immune cells fold and damage fungal hyphae. Proc. Natl. Acad. Sci. U S A. 118, 1–8 (2021).

    Google Scholar 

  84. Grant, L. et al. Myeloid-cell protein tyrosine phosphatase-1B deficiency in mice protects against high-fat diet and lipopolysaccharide-induced inflammation, hyperinsulinemia, and endotoxemia through an IL-10 STAT3-dependent mechanism. Diabetes 63, 456–470 (2014).

    Google Scholar 

  85. Baker, C. P. et al. DIA label-free proteomic analysis of murine bone-marrow-derived macrophages. STAR. Protoc. 3, 101725 (2022).

    Google Scholar 

  86. Sinclair, L. V. et al. Autophagy repression by antigen and cytokines shapes mitochondrial, migration and effector machinery in CD8 T cells. Nat. Immunol. 26, 429–443 (2025).

    Google Scholar 

  87. Baker, C. P. et al. Optimising Spectronaut search parameters to improve data quality with minimal proteome coverage reductions in DIA analyses of heterogeneous samples. J. Proteome Res. 23, 1926–1936 (2024).

    Google Scholar 

  88. Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration Estimation without spike-in standards. Mol. Cell. Proteomics. 13, 3497–3506 (2014).

    Google Scholar 

  89. Tyanova, S. et al. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 13, 731–740 (2016).

    Google Scholar 

  90. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Google Scholar 

  91. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Brenes and A. Howden for proteomic analysis advice; Dundee University Biological Resource unit; A. Score, A. Atrih and the Fingerprint Proteomics Facility.

Funding

This work was funded by the Wellcome Trust (102132/B/13/Z) and EastBio (BBSRC BBSRC DTP Research BB/M010996/1) PhD Studentships.

Author information

Authors and Affiliations

  1. Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD15EH, UK

    Christa P. Baker, Stephanie Laba, Jordan Warner, Karen Shepherd & J. Simon C. Arthur

  2. Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK

    Heather M. Wilson

Authors
  1. Christa P. Baker
    View author publications

    Search author on:PubMed Google Scholar

  2. Stephanie Laba
    View author publications

    Search author on:PubMed Google Scholar

  3. Jordan Warner
    View author publications

    Search author on:PubMed Google Scholar

  4. Karen Shepherd
    View author publications

    Search author on:PubMed Google Scholar

  5. Heather M. Wilson
    View author publications

    Search author on:PubMed Google Scholar

  6. J. Simon C. Arthur
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, JSCA, CPB, SL; methodology, JSCA, CPB, SL, JW, KS; formal analysis, CPB, SL; writing—original draft preparation and writing CPB; reviewing and editing, CPB, JSCA, JW, SL, HW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to J. Simon C. Arthur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, C.P., Laba, S., Warner, J. et al. Candida albicans infection suppresses lipopolysaccharide or Pseudomonas aeruginosa stimulated murine bone marrow derived macrophage (BMDM) responses. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39429-z

Download citation

  • Received: 16 June 2025

  • Accepted: 05 February 2026

  • Published: 13 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39429-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Macrophage
  • Toll-like receptor
  • Interleukin 6
  • Candida
  • Fungal infection
  • Pseudomonas
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing