Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
fln-2 isoform-specifically regulates Caenorhabditis elegans health span by affecting pharyngeal function
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

fln-2 isoform-specifically regulates Caenorhabditis elegans health span by affecting pharyngeal function

  • Ya-Hong Chang1 na1,
  • Ai-Qiu Chi1 na1,
  • Yu-Chen Ren1,
  • Xue-Pan Mu1,
  • Bei-Bei Tao1,
  • Zhiyong Shao2 &
  • …
  • Yi-Chun Zhu1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Genetics
  • Microbiology

Abstract

Aging is regulated by both genetic and environmental factors, and Caenorhabditis elegans is a key model due to its conserved longevity pathways. The fln-2 gene, encoding an ortholog of human filamin A (FLNa) with up to 27 isoforms, is known to modulate pharyngeal infection and lifespan in C. elegans. Still, its isoform-specific roles and mechanisms have not been fully elucidated. Here, we demonstrate that mutations specifically disrupting the longest fln-2 isoforms (fln-2a/e/s/t/r/u/v/w) extend healthspan, whereas those disrupting all isoforms shorten it. The FLN-2 A/E/S/T/R/U/V/W are enriched in the pharyngeal epical region, and their loss of function results in enhanced pharyngeal grinding efficiency, reduced pharyngeal infections, decreased bacterial colonization in the intestine, and maintenance of intestinal integrity, ultimately extending lifespan. Dietary restriction has been reported to extend lifespan in multiple species, whereas the fln-2 mutations extend lifespan without reducing food intake. These findings demonstrate the molecular mechanism by which specific fln-2 isoforms modulate aging by enhancing pharyngeal function and reducing intestinal bacterial load, providing a new insight into FLNa’s role in aging.

Data availability

All data generated or analyzed in this study are included in the article (and its supplementary information files). It can also contact the corresponding author for additional requests.

References

  1. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512. https://doi.org/10.1038/nature08980 (2010).

    Google Scholar 

  2. Sniderman, A. D. & Furberg, C. D. Age as a modifiable risk factor for cardiovascular disease. Lancet 371, 1547–1549 (2008).

    Google Scholar 

  3. SMETANA, K. et al. Ageing as an important risk factor for cancer. Anticancer Res. 36, 5009–5017 (2016).

    Google Scholar 

  4. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Reviews Neurol. 15, 565–581 (2019).

    Google Scholar 

  5. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life Span—From yeast to humans. Science 328, 321–326. https://doi.org/10.1126/science.1172539 (2010).

    Google Scholar 

  6. de Magalhães, J. P. et al. Human ageing genomic resources: updates on key databases in ageing research. Nucleic Acids Res. 52, D900–D908. https://doi.org/10.1093/nar/gkad927 (2023).

    Google Scholar 

  7. Zhang, S., Li, F., Zhou, T., Wang, G. & Li, Z. Caenorhabditis elegans as a useful model for studying aging mutations. Front. Endocrinol. 11, 554994 (2020).

    Google Scholar 

  8. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464. https://doi.org/10.1038/366461a0 (1993).

    Google Scholar 

  9. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in caenorhabditis elegans. Proc. Natl. Acad. Sci. U S A. 95, 13091–13096. https://doi.org/10.1073/pnas.95.22.13091 (1998).

    Google Scholar 

  10. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484. https://doi.org/10.1016/j.cell.2006.01.016 (2006).

    Google Scholar 

  11. Kurz, C. L. & Tan, M. W. Regulation of aging and innate immunity in C. elegans. Aging cell. 3, 185–193 (2004).

    Google Scholar 

  12. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. 33, 40–48. https://doi.org/10.1038/ng1056 (2003).

    Google Scholar 

  13. Ma, L. et al. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in caenorhabditis elegans. Genetics https://doi.org/10.1093/genetics/iyae071 (2024).

  14. Zhou, J., Kang, X., An, H., Lv, Y. & Liu, X. The function and pathogenic mechanism of filamin A. Gene 784, 145575. https://doi.org/10.1016/j.gene.2021.145575 (2021).

    Google Scholar 

  15. Zhao, Y., Wang, H., Poole, R. J. & Gems, D. A fln-2 mutation affects lethal pathology and lifespan in C. elegans. Nat. Commun. 10, 5087. https://doi.org/10.1038/s41467-019-13062-z (2019).

    Google Scholar 

  16. DeMaso, C. R., Kovacevic, I., Uzun, A. & Cram, E. J. Structural and functional evaluation of C. elegans filamins FLN-1 and FLN-2. PLoS One. 6, e22428. https://doi.org/10.1371/journal.pone.0022428 (2011).

    Google Scholar 

  17. Sarin, S. et al. Analysis of multiple Ethyl methanesulfonate-mutagenized caenorhabditis elegans strains by whole-genome sequencing. Genetics 185, 417–430 (2010).

    Google Scholar 

  18. Shi, L. et al. Filamin FLN-2 promotes MVB biogenesis by mediating vesicle Docking on the actin cytoskeleton. J. Cell. Biol. https://doi.org/10.1083/jcb.202201020 (2022).

  19. Yin, D. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic. Biol. Med. 21, 871–888. https://doi.org/10.1016/0891-5849(96)00175-X (1996).

    Google Scholar 

  20. Keith, S. A., Amrit, F. R. G., Ratnappan, R. & Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476–486. https://doi.org/10.1016/j.ymeth.2014.04.003 (2014).

    Google Scholar 

  21. Davis, B. O. Jr., Anderson, G. L. & Dusenbery, D. B. Total luminescence spectroscopy of fluorescence changes during aging in caenorhabditis elegans. Biochemistry 21, 4089–4095. https://doi.org/10.1021/bi00260a027 (1982).

    Google Scholar 

  22. Gerstbrein, B., Stamatas, G., Kollias, N. & Driscoll, M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in caenorhabditis elegans. Aging Cell. 4, 127–137. https://doi.org/10.1111/j.1474-9726.2005.00153.x (2005).

    Google Scholar 

  23. Hosono, R., Sato, Y., Aizawa, S. I. & Mitsui, Y. Age-dependent changes in mobility and separation of the nematode caenorhabditis elegans. Exp. Gerontol. 15, 285–289. https://doi.org/10.1016/0531-5565(80)90032-7 (1980).

    Google Scholar 

  24. Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19, 109–120 (2018).

    Google Scholar 

  25. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval Arrest, adult Behavior, reproduction and longevity in caenorhabditis elegans. Genetics 150, 129–155. https://doi.org/10.1093/genetics/150.1.129 (1998).

    Google Scholar 

  26. Ogg, S. et al. The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999. https://doi.org/10.1038/40194 (1997).

    Google Scholar 

  27. Tissenbaum, H. A. DAF-16: FOXO in the context of C. elegans. Curr. Top. Dev. Biol. 127, 1–21 (2018).

    Google Scholar 

  28. Kwon, G., Lee, J. & Lim, Y. H. Dairy Propionibacterium extends the mean lifespan of caenorhabditis elegans via activation of the innate immune system. Sci. Rep. 6, 31713. https://doi.org/10.1038/srep31713 (2016).

    Google Scholar 

  29. Lee, G. D. et al. Dietary deprivation extends lifespan in caenorhabditis elegans. Aging Cell. 5, 515–524. https://doi.org/10.1111/j.1474-9726.2006.00241.x (2006).

    Google Scholar 

  30. Avery, L. The genetics of feeding in caenorhabditis elegans. Genetics 133, 897–917. https://doi.org/10.1093/genetics/133.4.897 (1993).

    Google Scholar 

  31. Gomez-Amaro, R. L. et al. Measuring food intake and nutrient absorption in caenorhabditis elegans. Genetics 200, 443–454. https://doi.org/10.1534/genetics.115.175851 (2015).

    Google Scholar 

  32. Koopman, M. et al. A screening-based platform for the assessment of cellular respiration in caenorhabditis elegans. Nat. Protoc. 11, 1798–1816. https://doi.org/10.1038/nprot.2016.106 (2016).

    Google Scholar 

  33. Saraste, M. Oxidative phosphorylation at the fin de siècle. Science 283, 1488–1493. https://doi.org/10.1126/science.283.5407.1488 (1999).

    Google Scholar 

  34. Jia, K. & Levine, B. Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3, 597–599 (2007).

    Google Scholar 

  35. Gelino, S. et al. Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. PLoS Genet. 12, e1006135. https://doi.org/10.1371/journal.pgen.1006135 (2016).

    Google Scholar 

  36. Lapierre, L. R. et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in caenorhabditis elegans. Nat. Commun. 4, 2267. https://doi.org/10.1038/ncomms3267 (2013).

    Google Scholar 

  37. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Google Scholar 

  38. Erdélyi, P. et al. Shared developmental roles and transcriptional control of autophagy and apoptosis in caenorhabditis elegans. J. Cell. Sci. 124, 1510–1518. https://doi.org/10.1242/jcs.080192 (2011).

    Google Scholar 

  39. Guo, B. et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell. Biol. 16, 1215–1226. https://doi.org/10.1038/ncb3066 (2014).

    Google Scholar 

  40. Ogura, K. et al. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev. 8, 2389–2400. https://doi.org/10.1101/gad.8.20.2389 (1994).

    Google Scholar 

  41. George-Raizen, J. B., Shockley, K. R., Trojanowski, N. F., Lamb, A. L. & Raizen, D. M. Dynamically-expressed prion-like proteins form a cuticle in the pharynx of caenorhabditis elegans. Biology Open. 3, 1139–1149. https://doi.org/10.1242/bio.20147500 (2014).

    Google Scholar 

  42. Straud, S., Lee, I., Song, B., Avery, L. & You, Y. J. The jaw of the worm: GTPase-activating protein EAT-17 regulates grinder formation in caenorhabditis elegans. Genetics 195, 115–125 (2013).

    Google Scholar 

  43. Portal-Celhay, C., Bradley, E. R. & Blaser, M. J. Control of intestinal bacterial proliferation in regulation of lifespan in caenorhabditis elegans. BMC Microbiol. 12, 49. https://doi.org/10.1186/1471-2180-12-49 (2012).

    Google Scholar 

  44. Kumar, S. et al. Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell. 49, 100–117e106. https://doi.org/10.1016/j.devcel.2019.03.010 (2019).

    Google Scholar 

  45. Salazar, A. M., Aparicio, R., Clark, R. I., Rera, M. & Walker, D. W. Intestinal barrier dysfunction: an evolutionarily conserved hallmark of aging. Dis. Models Mech. 16, dmm049969 (2023).

    Google Scholar 

  46. Ma, Y. C. et al. YAP in epithelium senses gut barrier loss to deploy defenses against pathogens. PLoS Pathog. 16, e1008766 (2020).

    Google Scholar 

  47. Brenner, S. The genetics of caenorhabditis elegans. Genetics 77, 71–94 (1974).

    Google Scholar 

  48. Shen, K. & Bargmann, C. I. The Immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 112, 619–630. https://doi.org/10.1016/s0092-8674(03)00113-2 (2003).

    Google Scholar 

  49. Dickinson, D. J., Ward, J. D., Reiner, D. J. & Goldstein, B. Engineering the caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods. 10, 1028–1034. https://doi.org/10.1038/nmeth.2641 (2013).

    Google Scholar 

  50. Berkowitz, L. A., Knight, A. L., Caldwell, G. A. & Caldwell, K. A. Generation of stable Transgenic C. elegans using microinjection. J. Vis. Exp. https://doi.org/10.3791/833 (2008).

    Google Scholar 

  51. Friedland, A. E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods. 10, 741–743. https://doi.org/10.1038/nmeth.2532 (2013).

    Google Scholar 

  52. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in caenorhabditis elegans. Methods 30, 313–321. https://doi.org/10.1016/S1046-2023(03)00050-1 (2003).

    Google Scholar 

  53. Rivera, D. E., Lažetić, V., Troemel, E. R. & Luallen, R. J. RNA fluorescence in situ hybridization (FISH) to visualize microbial colonization and infection in caenorhabditis elegans intestines. J. Vis. Exp. https://doi.org/10.3791/63980 (2022).

    Google Scholar 

  54. Lapierre, L. R., Gelino, S., Meléndez, A. & Hansen, M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr. Biol. 21, 1507–1514 (2011).

    Google Scholar 

  55. Albertson, D. G. & Thomson, J. N. The pharynx of caenorhabditis elegans. Philos. Trans. R Soc. Lond. B Biol. Sci. 275, 299–325. https://doi.org/10.1098/rstb.1976.0085 (1976).

    Google Scholar 

Download references

Acknowledgements

We thank Xiaochen Wang for kindly supplying the XW16577 and XW20193 strains. Some strains were obtained from the Caenorhabditis Genetics Center (CGC).

Funding

This research was supported by the Ministry of Science and Technology, People’s Republic of China (2021YFA0909300 and 2022YFE0205400), the National Natural Science Foundation of China (32371227, 32370877, 32170828 and 31830042), the Noncommunicable Chronic Diseases-National Science and Technology Major Project (2023ZD0503203), and the Macau Science and Technology Development Fund (FDCT) (0007/2019/AKP to Yichun Zhu).

Author information

Author notes
  1. These authors contributed equally: Ya-Hong Chang and Ai-Qiu Chi.

Authors and Affiliations

  1. Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China

    Ya-Hong Chang, Ai-Qiu Chi, Yu-Chen Ren, Xue-Pan Mu, Bei-Bei Tao & Yi-Chun Zhu

  2. Department of Neurosurgery, the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, the Institutes of Brain Science, and Zhongshan Hospital, Fudan University Shanghai, Shanghai, China

    Zhiyong Shao

Authors
  1. Ya-Hong Chang
    View author publications

    Search author on:PubMed Google Scholar

  2. Ai-Qiu Chi
    View author publications

    Search author on:PubMed Google Scholar

  3. Yu-Chen Ren
    View author publications

    Search author on:PubMed Google Scholar

  4. Xue-Pan Mu
    View author publications

    Search author on:PubMed Google Scholar

  5. Bei-Bei Tao
    View author publications

    Search author on:PubMed Google Scholar

  6. Zhiyong Shao
    View author publications

    Search author on:PubMed Google Scholar

  7. Yi-Chun Zhu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Author contributions include the following: Y.C., Z.S., and Y.Z. conceived and designed the project. Y.C., A.C., Y.R., and X.M. performed the experiments. Z.S., Y.C., and A.C. analyzed the experimental data and interpreted the experimental results. Y.C., Z.S., and Y.Z. wrote the manuscript. B.T. revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Bei-Bei Tao, Zhiyong Shao or Yi-Chun Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YH., Chi, AQ., Ren, YC. et al. fln-2 isoform-specifically regulates Caenorhabditis elegans health span by affecting pharyngeal function. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39461-z

Download citation

  • Received: 25 January 2026

  • Accepted: 05 February 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39461-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology