Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
SPACE: A novel digital tool for assessing hippocampal structural integrity in older adults
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 February 2026

SPACE: A novel digital tool for assessing hippocampal structural integrity in older adults

  • Karolina Minta1,2 na1,
  • Giorgio Colombo1,3 na1,
  • Mervin Tee4 na1,
  • Marcus Low4,
  • Jascha Grübel5,6,
  • Jan Wiener7,
  • Christopher P. Chen2,8,
  • Saima Hilal2,4,8 &
  • …
  • Victor R. Schinazi1,9 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cognitive ageing
  • Human behaviour

Abstract

Hippocampal atrophy is a hallmark of Alzheimer’s disease and is linked to deficits in navigation. We investigated whether performance in a novel digital assessment, the Spatial Performance Assessment for Cognitive Evaluation (SPACE), is associated with hippocampal volume beyond traditional neuropsychological tests in older adults. Forty older adults (Mage = 67, SD = 6) underwent structural MRI and completed the spatial and navigation tasks in SPACE along with a battery of neuropsychological tests typically used to detect cognitive impairment. Regression analyses revealed that poorer performance in the path integration and mapping tasks was associated with smaller hippocampal volume after accounting for age, education, and neuropsychological test performance. Notably, individuals who accurately completed the path integration task and successfully learned the spatial configuration of landmarks required for subsequent reconstruction in the mapping task exhibited larger hippocampal volumes. Together, these findings suggest that SPACE may capture aspects of spatial cognition closely linked to hippocampal structural integrity and may complement existing cognitive assessments by providing increased sensitivity to hippocampal variation in non-clinical older adults.

Data availability

Due to the sensitive nature of the data, access to the datasets supporting the findings of this study can be obtained from the corresponding author upon reasonable request and following ethics approval.

Abbreviations

AD:

Alzheimer’s disease

D-CAT:

Digit cancellation test

MRI:

Magnetic resonance imaging

MoCA:

Montreal cognitive assessment

PI:

Path integration

SPACE:

Spatial performance assessment for cognitive evaluation

TMT:

Trail making test

VE:

Virtual environments

MCI:

Mild Cognitive Impairment

References

  1. O’Shea, A., Cohen, R. A., Porges, E. C., Nissim, N. R. & Woods, A. J. Cognitive aging and the hippocampus in older adults. Front. Aging Neurosci. 8, 298. https://doi.org/10.3389/fnagi.2016.00298 (2016).

    Google Scholar 

  2. Bettio, L. E. B., Rajendran, L. & Gil-Mohapel, J. The effects of aging in the hippocampus and cognitive decline. Neurosci. Biobehav Rev. 79, 66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030 (2017).

    Google Scholar 

  3. Jernigan, T. L. et al. Cerebral structure on MRI, part I: localization of age-related changes. Biol. Psychiatry. 29, 55–67. https://doi.org/10.1016/0006-3223(91)90210-d (1991).

    Google Scholar 

  4. Golomb, J. et al. Hippocampal atrophy in normal aging. An association with recent memory impairment. Arch. Neurol. 50, 967–973. https://doi.org/10.1001/archneur.1993.00540090066012 (1993).

    Google Scholar 

  5. Persson, J. et al. Structure-function correlates of cognitive decline in aging. Cereb. Cortex. 16, 907–915. https://doi.org/10.1093/cercor/bhj036 (2006).

    Google Scholar 

  6. Barnes, J. et al. A meta-analysis of hippocampal atrophy rates in alzheimer’s disease. Neurobiol. Aging. 30, 1711–1723. https://doi.org/10.1016/j.neurobiolaging.2008.01.010 (2009).

    Google Scholar 

  7. Buckner, R. L. Functional-anatomic correlates of control processes in memory. J. Neurosci. 23, 3999–4004. https://doi.org/10.1523/JNEUROSCI.23-10-03999.2003 (2003).

    Google Scholar 

  8. Squire, L. R. & Zola-Morgan, S. The medial Temporal lobe memory system. Science 253, 1380–1386. https://doi.org/10.1126/science.1896849 (1991).

    Google Scholar 

  9. Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial Temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152. https://doi.org/10.1146/annurev.neuro.30.051606.094328 (2007).

    Google Scholar 

  10. Ruiz, N. A., Meager, M. R., Agarwal, S. & Aly, M. The medial Temporal lobe is critical for Spatial relational perception. J. Cogn. Neurosci. 32, 1780–1795. https://doi.org/10.1162/jocn_a_01583 (2020).

    Google Scholar 

  11. O’Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J. & Maguire, E. A. Place cells, navigational accuracy, and the human hippocampus. Philos. Trans. R Soc. Lond. B Biol. Sci. 353, 1333–1340. https://doi.org/10.1098/rstb.1998.0287 (1998).

    Google Scholar 

  12. Rolls, E. T. Hippocampal Spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 33, 533–572. https://doi.org/10.1002/hipo.23467 (2023).

    Google Scholar 

  13. Hafting, T., Fyhn, M., Molden, S. & Moser, M. B. Moser, E. I. Microstructure of a Spatial map in the entorhinal cortex. Nature 436, 801–806. https://doi.org/10.1038/nature03721 (2005).

    Google Scholar 

  14. Jacobs, J. et al. Direct recordings of grid-like neuronal activity in human Spatial navigation. Nat. Neurosci. 16, 1188–1190. https://doi.org/10.1038/nn.3466 (2013).

    Google Scholar 

  15. Hassabis, D. et al. Decoding neuronal ensembles in the human hippocampus. Curr. Biol. 19, 546–554. https://doi.org/10.1016/j.cub.2009.02.033 (2009).

    Google Scholar 

  16. Ekstrom, A. D. et al. Cellular networks underlying human Spatial navigation. Nature 425, 184–188. https://doi.org/10.1038/nature01964 (2003).

    Google Scholar 

  17. Schinazi, V. R. & Thrash, T. Cognitive neuroscience of Spatial and geographic thinking. Handb. Behav. Cogn. Geogr. 154–174. https://doi.org/10.4337/9781784717544.00016 (2018).

  18. Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: Spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513. https://doi.org/10.1038/nn.4656 (2017).

    Google Scholar 

  19. Maguire, E. A., Frackowiak, R. S. & Frith, C. D. Recalling routes around london: activation of the right hippocampus in taxi drivers. J. Neurosci. 17, 7103–7110. https://doi.org/10.1523/JNEUROSCI.17-18-07103.1997 (1997).

    Google Scholar 

  20. Maguire, E. A. et al. Knowing where and getting there: a human navigation network. Science 280, 921–924. https://doi.org/10.1126/science.280.5365.921 (1998).

    Google Scholar 

  21. Wolbers, T. & Buchel, C. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J. Neurosci. 25, 3333–3340. https://doi.org/10.1523/JNEUROSCI.4705-04.2005 (2005).

    Google Scholar 

  22. Morgan, L. K., Macevoy, S. P., Aguirre, G. K. & Epstein, R. A. Distances between real-world locations are represented in the human hippocampus. J. Neurosci. 31, 1238–1245. https://doi.org/10.1523/JNEUROSCI.4667-10.2011 (2011).

    Google Scholar 

  23. Howard, L. R. et al. The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr. Biol. 24, 1331–1340. https://doi.org/10.1016/j.cub.2014.05.001 (2014).

    Google Scholar 

  24. Patai, E. Z. et al. Hippocampal and retrosplenial goal distance coding after Long-term consolidation of a Real-World environment. Cereb. Cortex. 29, 2748–2758. https://doi.org/10.1093/cercor/bhz044 (2019).

    Google Scholar 

  25. Chrastil, E. R., Sherrill, K. R., Aselcioglu, I., Hasselmo, M. E. & Stern, C. E. Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex. eNeuro 4 (2017). https://doi.org/10.1523/ENEURO.0346-16.2017

  26. Chrastil, E. R., Sherrill, K. R., Hasselmo, M. E. & Stern, C. E. There and back again: hippocampus and retrosplenial cortex track homing distance during human path integration. J. Neurosci. 35, 15442–15452. https://doi.org/10.1523/JNEUROSCI.1209-15.2015 (2015).

    Google Scholar 

  27. Wolbers, T., Wiener, J. M., Mallot, H. A. & Buchel, C. Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. J. Neurosci. 27, 9408–9416. https://doi.org/10.1523/JNEUROSCI.2146-07.2007 (2007).

    Google Scholar 

  28. Shrager, Y., Kirwan, C. B. & Squire, L. R. Neural basis of the cognitive map: path integration does not require hippocampus or entorhinal cortex. Proc. Natl. Acad. Sci. U S A. 105, 12034–12038. https://doi.org/10.1073/pnas.0805414105 (2008).

    Google Scholar 

  29. Kim, S., Sapiurka, M., Clark, R. E. & Squire, L. R. Contrasting effects on path integration after hippocampal damage in humans and rats. Proc. Natl. Acad. Sci. U S A. 110, 4732–4737. https://doi.org/10.1073/pnas.1300869110 (2013).

    Google Scholar 

  30. Segen, V., Ying, J., Morgan, E., Brandon, M. & Wolbers, T. Path integration in normal aging and alzheimer’s disease. Trends Cogn. Sci. 26, 142–158. https://doi.org/10.1016/j.tics.2021.11.001 (2022).

    Google Scholar 

  31. Howett, D. et al. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766. https://doi.org/10.1093/brain/awz116 (2019).

    Google Scholar 

  32. Iaria, G., Petrides, M., Dagher, A., Pike, B. & Bohbot, V. D. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J. Neurosci. 23, 5945–5952. https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003 (2003).

    Google Scholar 

  33. Marchette, S. A., Bakker, A. & Shelton, A. L. Cognitive mappers to creatures of habit: differential engagement of place and response learning mechanisms predicts human navigational behavior. J. Neurosci. 31, 15264–15268. https://doi.org/10.1523/jneurosci.3634-11.2011 (2011).

    Google Scholar 

  34. Arnold, A. E., Burles, F., Bray, S., Levy, R. M. & Iaria, G. Differential neural network configuration during human path integration. Front. Hum. Neurosci. 8, 263. https://doi.org/10.3389/fnhum.2014.00263 (2014).

    Google Scholar 

  35. Spiers, H. J. & Gilbert, S. J. Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front. Hum. Neurosci. 9, 125. https://doi.org/10.3389/fnhum.2015.00125 (2015).

    Google Scholar 

  36. Maguire, E. A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U S A. 97, 4398–4403. https://doi.org/10.1073/pnas.070039597 (2000).

    Google Scholar 

  37. Maguire, E. A., Woollett, K. & Spiers, H. J. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16, 1091–1101. https://doi.org/10.1002/hipo.20233 (2006).

    Google Scholar 

  38. Woollett, K. & Maguire, E. A. Acquiring the knowledge of london’s layout drives structural brain changes. Curr. Biol. 21, 2109–2114. https://doi.org/10.1016/j.cub.2011.11.018 (2011).

    Google Scholar 

  39. Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F. & Epstein, R. A. Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23, 515–528. https://doi.org/10.1002/hipo.22111 (2013).

    Google Scholar 

  40. Brown, T. I., Whiteman, A. S., Aselcioglu, I. & Stern, C. E. Structural differences in hippocampal and prefrontal Gray matter volume support flexible context-dependent navigation ability. J. Neurosci. 34, 2314–2320. https://doi.org/10.1523/JNEUROSCI.2202-13.2014 (2014).

    Google Scholar 

  41. Ezzati, A. et al. Differential association of left and right hippocampal volumes with verbal episodic and Spatial memory in older adults. Neuropsychologia 93, 380–385. https://doi.org/10.1016/j.neuropsychologia.2016.08.016 (2016).

    Google Scholar 

  42. Chen, K. H., Chuah, L. Y., Sim, S. K. & Chee, M. W. Hippocampal region-specific contributions to memory performance in normal elderly. Brain Cogn. 72, 400–407. https://doi.org/10.1016/j.bandc.2009.11.007 (2010).

    Google Scholar 

  43. Head, D. & Isom, M. Age effects on wayfinding and route learning skills. Behav. Brain Res. 209, 49–58. https://doi.org/10.1016/j.bbr.2010.01.012 (2010).

    Google Scholar 

  44. Driscoll, I. et al. The aging hippocampus: cognitive, biochemical and structural findings. Cereb. Cortex. 13, 1344–1351. https://doi.org/10.1093/cercor/bhg081 (2003).

    Google Scholar 

  45. Korthauer, L. E. et al. Correlates of virtual navigation performance in older adults. Neurobiol. Aging. 39, 118–127. https://doi.org/10.1016/j.neurobiolaging.2015.12.003 (2016).

    Google Scholar 

  46. Konishi, K. & Bohbot, V. D. Spatial navigational strategies correlate with Gray matter in the hippocampus of healthy older adults tested in a virtual maze. Front. Aging Neurosci. 5, 1. https://doi.org/10.3389/fnagi.2013.00001 (2013).

    Google Scholar 

  47. Sodums, D. J. & Bohbot, V. D. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging. Hippocampus 30, 892–908. https://doi.org/10.1002/hipo.23210 (2020).

    Google Scholar 

  48. de Toledo-Morrell, L. et al. Hemispheric differences in hippocampal volume predict verbal and Spatial memory performance in patients with alzheimer’s disease. Hippocampus 10, 136–142. https://doi.org/10.1002/(SICI)1098-1063(2000)10:2%3C136 (2000). :AID-HIPO2>3.0.CO;2-J

    Google Scholar 

  49. Nedelska, Z. et al. Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U S A. 109, 2590–2594. https://doi.org/10.1073/pnas.1121588109 (2012).

    Google Scholar 

  50. deIpolyi, A. R., Rankin, K. P., Mucke, L., Miller, B. L. & Gorno-Tempini, M. L. Spatial cognition and the human navigation network in AD and MCI. Neurology 69, 986–997. https://doi.org/10.1212/01.wnl.0000271376.19515.c6 (2007).

    Google Scholar 

  51. Maguire, E. A. et al. Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13, 250–259. https://doi.org/10.1002/hipo.10087 (2003).

    Google Scholar 

  52. Clark, I. A. et al. Does hippocampal volume explain performance differences on hippocampal-dependant tasks? Neuroimage 221, 117211 (2020). https://doi.org/10.1016/j.neuroimage.2020.117211

  53. Weisberg, S. M., Newcombe, N. S. & Chatterjee, A. Everyday taxi drivers: do better navigators have larger hippocampi? Cortex 115, 280–293. https://doi.org/10.1016/j.cortex.2018.12.024 (2019).

    Google Scholar 

  54. Alina, S. et al. Chrastil. Do total hippocampus and hippocampal subfield volumes relate to navigation ability? A call towards methodological consistency. Cortex https://doi.org/10.1016/j.cortex.2024.08.011 (2024).

    Google Scholar 

  55. He, Q. & Brown, T. I. Heterogeneous correlations between hippocampus volume and cognitive map accuracy among healthy young adults. Cortex 124, 167–175. https://doi.org/10.1016/j.cortex.2019.11.011 (2020).

    Google Scholar 

  56. Nasreddine, Z. S. et al. The Montreal cognitive Assessment, moca: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x (2005).

    Google Scholar 

  57. Cheng, X. et al. Associations between brain structures, cognition and dual-task performance in patients with mild cognitive impairment: A study based on voxel-based morphology. Hum. Mov. Sci. 97, 103257. https://doi.org/10.1016/j.humov.2024.103257 (2024).

    Google Scholar 

  58. Gao, Y. et al. Changes of brain structure in parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci. Lett. 658, 121–132. https://doi.org/10.1016/j.neulet.2017.08.028 (2017).

    Google Scholar 

  59. Del Brutto, O. H., Mera, R. M., Zambrano, M., Soriano, F. & Lama, J. Global cortical atrophy (GCA) associates with worse performance in the Montreal cognitive assessment (MoCA). A population-based study in community-dwelling elders living in rural Ecuador. Arch. Gerontol. Geriatr. 60, 206–209. https://doi.org/10.1016/j.archger.2014.09.010 (2015).

    Google Scholar 

  60. Paul, R. et al. Neuroimaging signatures and cognitive correlates of the Montreal cognitive assessment screen in a nonclinical elderly sample. Arch. Clin. Neuropsychol. 26, 454–460. https://doi.org/10.1093/arclin/acr017 (2011).

    Google Scholar 

  61. Liang, L. et al. Structural and functional hippocampal changes in subjective cognitive decline from the community. Front. Aging Neurosci. 12, 64. https://doi.org/10.3389/fnagi.2020.00064 (2020).

    Google Scholar 

  62. Liang, X. et al. The role of MRI biomarkers and their interactions with cognitive status and APOE epsilon4 in nondemented elderly subjects. Neurodegener Dis. 18, 270–280. https://doi.org/10.1159/000495754 (2018).

    Google Scholar 

  63. Feng, Q. et al. Machine learning classifiers and associations of cognitive performance with hippocampal subfields in amnestic mild cognitive impairment. Front. Aging Neurosci. 15, 1273658. https://doi.org/10.3389/fnagi.2023.1273658 (2023).

    Google Scholar 

  64. Ritter, A., Hawley, N., Banks, S. J. & Miller, J. B. The association between Montreal cognitive assessment memory scores and hippocampal volume in a neurodegenerative disease sample. J. Alzheimers Dis. 58, 695–699. https://doi.org/10.3233/JAD-161241 (2017).

    Google Scholar 

  65. Xiao, Y., Hu, Y. & Huang, K. Alzheimer’s disease Neuroimaging, I. Atrophy of hippocampal subfields relates to memory decline during the pathological progression of alzheimer’s disease. Front. Aging Neurosci. 15, 1287122. https://doi.org/10.3389/fnagi.2023.1287122 (2023).

    Google Scholar 

  66. Gupta, M. et al. Association of 3.0-T brain magnetic resonance imaging biomarkers with cognitive function in the Dallas heart study. JAMA Neurol. 72, 170–175. https://doi.org/10.1001/jamaneurol.2014.3418 (2015).

    Google Scholar 

  67. Colombo, G. et al. Detecting cognitive impairment through an age-friendly serious game: the development and usability of the Spatial performance assessment for cognitive evaluation (SPACE). Comput. Hum. Behav. 160 https://doi.org/10.1016/j.chb.2024.108349 (2024).

  68. Tian, N., Colombo, G. & Schinazi, V. From play to detection: Mini-SPACE as a serious game for unsupervised Cognitive Impairment screening. arXiv https://doi.org/10.48550/arXiv.2511.12068 (2025),

  69. Colombo, G. et al. Spatial navigation as a digital marker for clinically differentiating cognitive impairment severity. MedRxiv https://doi.org/10.1101/2025.06.05.25329079 (2025).

    Google Scholar 

  70. Colombo, G. et al. Beyond Traditional Assessments of Cognitive Impairment: Exploring the Potential of Spatial Navigation Tasks. MedRxiv https://doi.org/10.1101/2024.10.12.24315402 (2024).

  71. Rana, A. K. et al. A comparison of measurement methods of hippocampal atrophy rate for predicting alzheimer’s dementia in the Aberdeen birth cohort of 1936. Alzheimers Dement. (Amst). 6, 31–39. https://doi.org/10.1016/j.dadm.2016.11.007 (2017).

    Google Scholar 

  72. Ezekiel, F. et al. Comparisons between global and focal brain atrophy rates in normal aging and alzheimer disease: boundary shift integral versus tracing of the entorhinal cortex and hippocampus. Alzheimer Dis. Assoc. Disord. 18, 196–201 (2004).

    Google Scholar 

  73. Scahill, R. I. et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 60, 989–994. https://doi.org/10.1001/archneur.60.7.989 (2003).

    Google Scholar 

  74. Takeda, S. & Matsuzawa, T. Age-related brain atrophy: a study with computed tomography. J. Gerontol. 40, 159–163. https://doi.org/10.1093/geronj/40.2.159 (1985).

    Google Scholar 

  75. Whitwell, J. L. et al. Rates of cerebral atrophy differ in different degenerative pathologies. Brain 130, 1148–1158. https://doi.org/10.1093/brain/awm021 (2007).

    Google Scholar 

  76. Henneman, W. J. et al. Hippocampal atrophy rates in alzheimer disease: added value over whole brain volume measures. Neurology 72, 999–1007. https://doi.org/10.1212/01.wnl.0000344568.09360.31 (2009).

    Google Scholar 

  77. Duara, R. et al. Medial Temporal lobe atrophy on MRI scans and the diagnosis of alzheimer disease. Neurology 71, 1986–1992. https://doi.org/10.1212/01.wnl.0000336925.79704.9f (2008).

    Google Scholar 

  78. Noble, K. G. et al. Hippocampal volume varies with educational attainment across the life-span. Front. Hum. Neurosci. 6, 307. https://doi.org/10.3389/fnhum.2012.00307 (2012).

    Google Scholar 

  79. Shpanskaya, K. S. et al. Educational attainment and hippocampal atrophy in the alzheimer’s disease neuroimaging initiative cohort. J. Neuroradiol. 41, 350–357. https://doi.org/10.1016/j.neurad.2013.11.004 (2014).

    Google Scholar 

  80. Sharp, E. S. & Gatz, M. Relationship between education and dementia: an updated systematic review. Alzheimer Dis. Assoc. Disord. 25, 289–304. https://doi.org/10.1097/WAD.0b013e318211c83c (2011).

    Google Scholar 

  81. Devanand, D. P. et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of alzheimer disease. Neurology 68, 828–836. https://doi.org/10.1212/01.wnl.0000256697.20968.d7 (2007).

    Google Scholar 

  82. Kim, H. B. et al. Modulation of associations between education years and cortical volume in alzheimer’s disease vulnerable brain regions by Abeta deposition and APOE epsilon4 carrier status in cognitively normal older adults. Front. Aging Neurosci. 15, 1248531. https://doi.org/10.3389/fnagi.2023.1248531 (2023).

    Google Scholar 

  83. Whishaw, I. Q., McKenna, J. E. & Maaswinkel, H. Hippocampal lesions and path integration. Curr. Opin. Neurobiol. 7, 228–234. https://doi.org/10.1016/s0959-4388(97)80011-6 (1997).

    Google Scholar 

  84. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678. https://doi.org/10.1038/nrn1932 (2006).

    Google Scholar 

  85. Worsley, C. L. et al. Path integration following Temporal lobectomy in humans. Neuropsychologia 39, 452–464. https://doi.org/10.1016/s0028-3932(00)00140-8 (2001).

    Google Scholar 

  86. Sherrill, K. R. et al. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. J. Neurosci. 33, 19304–19313. https://doi.org/10.1523/JNEUROSCI.1825-13.2013 (2013).

    Google Scholar 

  87. Moffat, S. D., Kennedy, K. M., Rodrigue, K. M. & Raz, N. Extrahippocampal contributions to age differences in human Spatial navigation. Cereb. Cortex. 17, 1274–1282. https://doi.org/10.1093/cercor/bhl036 (2007).

    Google Scholar 

  88. Baumann, O. & Mattingley, J. B. Extrahippocampal contributions to Spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus 31, 640–657. https://doi.org/10.1002/hipo.23313 (2021).

    Google Scholar 

  89. Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G. & Zijdenbos, A. P. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J. Neurosci. 27, 10078–10083. https://doi.org/10.1523/JNEUROSCI.1763-07.2007 (2007).

    Google Scholar 

  90. Cleves, M., Gould, W. & Guiererez, R. G. An Introduction To Survival Analysis Using Stata (Vol. Revised Edition (Stata, 2004).

  91. Burgess, N. Spatial memory: how egocentric and allocentric combine. Trends Cogn. Sci. 10, 551–557. https://doi.org/10.1016/j.tics.2006.10.005 (2006).

    Google Scholar 

  92. Waller, D. & Hodgson, E. Transient and enduring Spatial representations under disorientation and self-rotation. J. Exp. Psychol. Learn. Mem. Cogn. 32, 867–882. https://doi.org/10.1037/0278-7393.32.4.867 (2006).

    Google Scholar 

  93. Duff, K. et al. Short-term repeat cognitive testing and its relationship to hippocampal volumes in older adults. J. Clin. Neurosci. 57, 121–125. https://doi.org/10.1016/j.jocn.2018.08.015 (2018).

    Google Scholar 

  94. Sue, K., Hirabayashi, H., Osawa, M. & Komatsu, T. Relationship between neuropsychological test scores and hippocampal atrophy in non-demented Japanese older adults. Interdiscip Neurosur. 30 https://doi.org/10.1016/j.inat.2022.101605 (2022).

  95. Frank, L. M., Brown, E. N. & Wilson, M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178. https://doi.org/10.1016/s0896-6273(00)00018-0 (2000).

    Google Scholar 

  96. Solstad, T., Boccara, C. N., Kropff, E. & Moser, M. B. Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868. https://doi.org/10.1126/science.1166466 (2008).

    Google Scholar 

  97. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661. https://doi.org/10.1038/nature08704 (2010).

    Google Scholar 

  98. Rodrigue, K. M. & Raz, N. Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults. J. Neurosci. 24, 956–963. https://doi.org/10.1523/JNEUROSCI.4166-03.2004 (2004).

    Google Scholar 

  99. Newton, C. et al. Entorhinal-based path integration selectively predicts midlife risk of alzheimer’s disease. Alzheimers Dement. 20, 2779–2793. https://doi.org/10.1002/alz.13733 (2024).

    Google Scholar 

  100. Laczo, M. et al. Spatial navigation questionnaires as a supportive diagnostic tool in early alzheimer’s disease. iScience 27, 109832. https://doi.org/10.1016/j.isci.2024.109832 (2024).

    Google Scholar 

  101. Hyde, J. S. The gender similarities hypothesis. Am. Psychol. 60, 581–592. https://doi.org/10.1037/0003-066X.60.6.581 (2005).

    Google Scholar 

  102. Lawton, C. A. & Gender Spatial Abilities, and Wayfinding. Gender Research in General and Experimental Psychology. 1, 317–341 (2010). https://doi.org/10.1007/978-1-4419-1465-1_16

  103. Nazareth, A., Huang, X., Voyer, D. & Newcombe, N. A meta-analysis of sex differences in human navigation skills. Psychon Bull. Rev. 26, 1503–1528. https://doi.org/10.3758/s13423-019-01633-6 (2019).

    Google Scholar 

  104. Munion, A. K., Stefanucci, J. K., Rovira, E., Squire, P. & Hendricks, M. Gender differences in Spatial navigation: characterizing wayfinding behaviors. Psychon Bull. Rev. 26, 1933–1940. https://doi.org/10.3758/s13423-019-01659-w (2019).

    Google Scholar 

  105. Lawton, C. A. & Kallai, J. Gender differences in wayfinding strategies and anxiety about wayfinding: A Cross-Cultural comparison. Sex. Roles. 47, 389–401. https://doi.org/10.1023/a:1021668724970 (2002).

    Google Scholar 

  106. Boone, A. P., Gong, X. & Hegarty, M. Sex differences in navigation strategy and efficiency. Mem. Cognit. 46, 909–922. https://doi.org/10.3758/s13421-018-0811-y (2018).

    Google Scholar 

  107. Picucci, L., Caffò, A. O. & Bosco, A. Besides navigation accuracy: gender differences in strategy selection and level of Spatial confidence. J. Environ. Psychol. 31, 430–438. https://doi.org/10.1016/j.jenvp.2011.01.005 (2011).

    Google Scholar 

  108. Lawton, C. A. Gender differences in way-finding strategies: relationship to Spatial ability and Spatial anxiety. Sex. Roles. 30, 765–779. https://doi.org/10.1007/bf01544230 (1994).

    Google Scholar 

  109. Gavrielidou, E. & Lamers, M. H. Landmarks and Time-Pressure in Virtual Navigation: Towards Designing Gender-Neutral Virtual Environments. International Conference on Facets of Virtual Environments 60–67 (2010). https://doi.org/10.1007/978-3-642-11743-5_5

  110. Schinazi, V. R. et al. Motivation moderates gender differences in navigation performance. Sci. Rep. 13, 15995. https://doi.org/10.1038/s41598-023-43241-4 (2023).

    Google Scholar 

  111. Ross, S. P., Skelton, R. W. & Mueller, S. C. Gender differences in Spatial navigation in virtual space: implications when using virtual environments in instruction and assessment. Virtual Real. 10, 175–184. https://doi.org/10.1007/s10055-006-0041-7 (2006).

    Google Scholar 

  112. Padilla, L. M., Creem-Regehr, S. H., Stefanucci, J. K. & Cashdan, E. A. Sex differences in virtual navigation influenced by scale and navigation experience. Psychon. Bull. Rev. 24, 582–590. https://doi.org/10.3758/s13423-016-1118-2 (2017).

    Google Scholar 

  113. Saucier, D., Bowman, M. & Elias, L. Sex differences in the effect of articulatory or Spatial dual-task interference during navigation. Brain Cogn. 53, 346–350. https://doi.org/10.1016/s0278-2626(03)00140-4 (2003).

    Google Scholar 

  114. Coutrot, A. et al. Global determinants of navigation ability. Curr. Biol. 28, 2861–2866e2864. https://doi.org/10.1016/j.cub.2018.06.009 (2018).

    Google Scholar 

  115. Global Gender Gap Report. : Insight Report. 395 (World Economic Forum, 2025). (2025).

  116. Broekhuis, M., van Velsen, L., Stal, S., Weldink, J. & Tabak, M. ter in 5th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2019. 48–57 (SCITEPRESS).

  117. Marston, H. R. Design recommendations for digital game design within an ageing society. Educ. Gerontol. 39, 103–118. https://doi.org/10.1080/03601277.2012.689936 (2013). https://doi.org/

    Google Scholar 

  118. Martinho, D., Carneiro, J., Corchado, J. M. & Marreiros, G. A systematic review of gamification techniques applied to elderly care. Artif. Intell. Rev. 53, 4863–4901. https://doi.org/10.1007/s10462-020-09809-6 (2020).

    Google Scholar 

  119. Ijsselsteijn, W., Nap, H. H., De Kort, Y. & Poels, K. in Proceedings of the 2007 conference on Future Play. 17–22.

  120. Czaja, S. J. Usability of technology for older adults: where are we and where do we need to be. J. Usability Stud. 14, 61–64 (2019).

    Google Scholar 

  121. Czaja, S. J., Boot, W. R., Charness, N. & Rogers, W. A. Designing for Older Adults: Principles and Creative Human Factors Approaches 3rd edn (CRC, 2019).

  122. Lorenz, M., Brade, J., Klimant, P., Heyde, C. E. & Hammer, N. Age and gender effects on presence, user experience and usability in virtual environments–first insights. PLOS ONE. 18, e0283565. https://doi.org/10.1371/journal.pone.0283565 (2023).

    Google Scholar 

  123. Sonderegger, A., Schmutz, S. & Sauer, J. The influence of age in usability testing. Appl. Ergon. 52, 291–300. https://doi.org/10.1016/j.apergo.2015.06.012 (2016).

    Google Scholar 

  124. Hartley, T. & Harlow, R. An association between human hippocampal volume and topographical memory in healthy young adults. Front. Hum. Neurosci. 6 https://doi.org/10.3389/fnhum.2012.00338 (2012).

  125. Farias, S. T. et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology 22, 531–544. https://doi.org/10.1037/0894-4105.22.4.531 (2008).

    Google Scholar 

  126. Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K. & Subbiah, I. Development of a self-report measure of environmental Spatial ability. Intelligence 30, 425–447 (2002).

    Google Scholar 

  127. Lovibond, P. F. & Lovibond, S. H. The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behav. Res. Ther. 33, 335–343. https://doi.org/10.1016/0005-7967(94)00075-u (1995).

    Google Scholar 

  128. Mohs, R. C. et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the alzheimer’s disease assessment scale that broaden its scope. The alzheimer’s disease cooperative study. Alzheimer Dis. Assoc. Disord. 11 (Suppl 2), S13–21 (1997).

    Google Scholar 

  129. Reitan, R. M. W. Deborah. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation Vol. 4 (Neuropsychology, 1985).

  130. Della Sala, S., Foley, J. A., Beschin, N., Allerhand, M. & Logie, R. H. Assessing dual-task performance using a paper-and-pencil test: normative data. Arch. Clin. Neuropsychol. 25, 410–419. https://doi.org/10.1093/arclin/acq039 (2010).

    Google Scholar 

  131. Foley, J. A., Kaschel, R., Logie, R. H. & Della Sala, S. Dual-task performance in alzheimer’s disease, mild cognitive impairment, and normal ageing. Arch. Clin. Neuropsychol. 26, 340–348. https://doi.org/10.1093/arclin/acr032 (2011).

    Google Scholar 

  132. Friedman, A. & Kohler, B. Bidimensional regression: assessing the configural similarity and accuracy of cognitive maps and other Two-Dimensional data sets. Psychol. Methods. 8, 468–491. https://doi.org/10.1037/1082-989x.8.4.468 (2003).

    Google Scholar 

  133. Tobler, W. R. Computation of the correspondence of geographical patterns. Papers Reg. Sci. Association. 15, 131–139. https://doi.org/10.1007/bf01947869 (1965).

    Google Scholar 

Download references

Acknowledgements

The research was conducted in the Future Health Technologies programme, which was established collaboratively between ETH Zurich and the National Research Foundation Singapore. This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and ETH Zürich. The authors would like to thank the Lions Befrienders Service Association for facilitating the recruitment process and Dr. Andrea Ferrario for his insightful consultation and guidance in statistical analysis.

Funding

This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and ETH Zürich. Specifically, this work was supported by the Intra-CREATE Seed Collaboration Grant (NRF2022-ITS010-0006).

Author information

Author notes
  1. Karolina Minta, Giorgio Colombo and Mervin Tee contributed equally to this work.

Authors and Affiliations

  1. Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore

    Karolina Minta, Giorgio Colombo & Victor R. Schinazi

  2. Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore

    Karolina Minta, Christopher P. Chen & Saima Hilal

  3. Chair of Cognitive Science, ETH Zurich, Zürich, 8092, Switzerland

    Giorgio Colombo

  4. Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore, Singapore

    Mervin Tee, Marcus Low & Saima Hilal

  5. Center for Sustainable Future Mobility, ETH Zurich, Zürich, 8092, Switzerland

    Jascha Grübel

  6. Laboratory of Geo-information Science and Remote Sensing, Wageningen University, Wageningen, 6708 PB, The Netherlands

    Jascha Grübel

  7. Department of Psychology, Ageing & Dementia Centre, Bournemouth University, Poole, UK

    Jan Wiener

  8. Memory Aging and Cognition Centre, National University Health System, Singapore, 117600, Singapore

    Christopher P. Chen & Saima Hilal

  9. Department of Psychology, Bond University, Gold Coast, QLD, Australia

    Victor R. Schinazi

Authors
  1. Karolina Minta
    View author publications

    Search author on:PubMed Google Scholar

  2. Giorgio Colombo
    View author publications

    Search author on:PubMed Google Scholar

  3. Mervin Tee
    View author publications

    Search author on:PubMed Google Scholar

  4. Marcus Low
    View author publications

    Search author on:PubMed Google Scholar

  5. Jascha Grübel
    View author publications

    Search author on:PubMed Google Scholar

  6. Jan Wiener
    View author publications

    Search author on:PubMed Google Scholar

  7. Christopher P. Chen
    View author publications

    Search author on:PubMed Google Scholar

  8. Saima Hilal
    View author publications

    Search author on:PubMed Google Scholar

  9. Victor R. Schinazi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.M., G.C., S.H., and V.R.S. designed the study and supervised the project. M.T. and M.L. led the recruitment of participants and data collection. M.T. processed the brain imaging data. K.M., G.C., and V.R.S. performed data analysis. K.M., G.C., and V.R.S. wrote the original draft of the manuscript. K.M., G.C., M.T., M.L., J.G., J.W., C.P.C., S.H., and V.R.S. discussed the results and contributed to the final manuscript. K.M. and S.H. acquired the financial support for the project, which led to this publication.

Corresponding author

Correspondence to Victor R. Schinazi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minta, K., Colombo, G., Tee, M. et al. SPACE: A novel digital tool for assessing hippocampal structural integrity in older adults. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39628-8

Download citation

  • Received: 15 March 2025

  • Accepted: 06 February 2026

  • Published: 12 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39628-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cognitive assessment
  • Cognitive map
  • Hippocampus
  • MRI
  • Spatial navigation
  • Volumetry
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing