Abstract
Hippocampal atrophy is a hallmark of Alzheimer’s disease and is linked to deficits in navigation. We investigated whether performance in a novel digital assessment, the Spatial Performance Assessment for Cognitive Evaluation (SPACE), is associated with hippocampal volume beyond traditional neuropsychological tests in older adults. Forty older adults (Mage = 67, SD = 6) underwent structural MRI and completed the spatial and navigation tasks in SPACE along with a battery of neuropsychological tests typically used to detect cognitive impairment. Regression analyses revealed that poorer performance in the path integration and mapping tasks was associated with smaller hippocampal volume after accounting for age, education, and neuropsychological test performance. Notably, individuals who accurately completed the path integration task and successfully learned the spatial configuration of landmarks required for subsequent reconstruction in the mapping task exhibited larger hippocampal volumes. Together, these findings suggest that SPACE may capture aspects of spatial cognition closely linked to hippocampal structural integrity and may complement existing cognitive assessments by providing increased sensitivity to hippocampal variation in non-clinical older adults.
Data availability
Due to the sensitive nature of the data, access to the datasets supporting the findings of this study can be obtained from the corresponding author upon reasonable request and following ethics approval.
Abbreviations
- AD:
-
Alzheimer’s disease
- D-CAT:
-
Digit cancellation test
- MRI:
-
Magnetic resonance imaging
- MoCA:
-
Montreal cognitive assessment
- PI:
-
Path integration
- SPACE:
-
Spatial performance assessment for cognitive evaluation
- TMT:
-
Trail making test
- VE:
-
Virtual environments
- MCI:
-
Mild Cognitive Impairment
References
O’Shea, A., Cohen, R. A., Porges, E. C., Nissim, N. R. & Woods, A. J. Cognitive aging and the hippocampus in older adults. Front. Aging Neurosci. 8, 298. https://doi.org/10.3389/fnagi.2016.00298 (2016).
Bettio, L. E. B., Rajendran, L. & Gil-Mohapel, J. The effects of aging in the hippocampus and cognitive decline. Neurosci. Biobehav Rev. 79, 66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030 (2017).
Jernigan, T. L. et al. Cerebral structure on MRI, part I: localization of age-related changes. Biol. Psychiatry. 29, 55–67. https://doi.org/10.1016/0006-3223(91)90210-d (1991).
Golomb, J. et al. Hippocampal atrophy in normal aging. An association with recent memory impairment. Arch. Neurol. 50, 967–973. https://doi.org/10.1001/archneur.1993.00540090066012 (1993).
Persson, J. et al. Structure-function correlates of cognitive decline in aging. Cereb. Cortex. 16, 907–915. https://doi.org/10.1093/cercor/bhj036 (2006).
Barnes, J. et al. A meta-analysis of hippocampal atrophy rates in alzheimer’s disease. Neurobiol. Aging. 30, 1711–1723. https://doi.org/10.1016/j.neurobiolaging.2008.01.010 (2009).
Buckner, R. L. Functional-anatomic correlates of control processes in memory. J. Neurosci. 23, 3999–4004. https://doi.org/10.1523/JNEUROSCI.23-10-03999.2003 (2003).
Squire, L. R. & Zola-Morgan, S. The medial Temporal lobe memory system. Science 253, 1380–1386. https://doi.org/10.1126/science.1896849 (1991).
Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial Temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152. https://doi.org/10.1146/annurev.neuro.30.051606.094328 (2007).
Ruiz, N. A., Meager, M. R., Agarwal, S. & Aly, M. The medial Temporal lobe is critical for Spatial relational perception. J. Cogn. Neurosci. 32, 1780–1795. https://doi.org/10.1162/jocn_a_01583 (2020).
O’Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J. & Maguire, E. A. Place cells, navigational accuracy, and the human hippocampus. Philos. Trans. R Soc. Lond. B Biol. Sci. 353, 1333–1340. https://doi.org/10.1098/rstb.1998.0287 (1998).
Rolls, E. T. Hippocampal Spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 33, 533–572. https://doi.org/10.1002/hipo.23467 (2023).
Hafting, T., Fyhn, M., Molden, S. & Moser, M. B. Moser, E. I. Microstructure of a Spatial map in the entorhinal cortex. Nature 436, 801–806. https://doi.org/10.1038/nature03721 (2005).
Jacobs, J. et al. Direct recordings of grid-like neuronal activity in human Spatial navigation. Nat. Neurosci. 16, 1188–1190. https://doi.org/10.1038/nn.3466 (2013).
Hassabis, D. et al. Decoding neuronal ensembles in the human hippocampus. Curr. Biol. 19, 546–554. https://doi.org/10.1016/j.cub.2009.02.033 (2009).
Ekstrom, A. D. et al. Cellular networks underlying human Spatial navigation. Nature 425, 184–188. https://doi.org/10.1038/nature01964 (2003).
Schinazi, V. R. & Thrash, T. Cognitive neuroscience of Spatial and geographic thinking. Handb. Behav. Cogn. Geogr. 154–174. https://doi.org/10.4337/9781784717544.00016 (2018).
Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: Spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513. https://doi.org/10.1038/nn.4656 (2017).
Maguire, E. A., Frackowiak, R. S. & Frith, C. D. Recalling routes around london: activation of the right hippocampus in taxi drivers. J. Neurosci. 17, 7103–7110. https://doi.org/10.1523/JNEUROSCI.17-18-07103.1997 (1997).
Maguire, E. A. et al. Knowing where and getting there: a human navigation network. Science 280, 921–924. https://doi.org/10.1126/science.280.5365.921 (1998).
Wolbers, T. & Buchel, C. Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J. Neurosci. 25, 3333–3340. https://doi.org/10.1523/JNEUROSCI.4705-04.2005 (2005).
Morgan, L. K., Macevoy, S. P., Aguirre, G. K. & Epstein, R. A. Distances between real-world locations are represented in the human hippocampus. J. Neurosci. 31, 1238–1245. https://doi.org/10.1523/JNEUROSCI.4667-10.2011 (2011).
Howard, L. R. et al. The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr. Biol. 24, 1331–1340. https://doi.org/10.1016/j.cub.2014.05.001 (2014).
Patai, E. Z. et al. Hippocampal and retrosplenial goal distance coding after Long-term consolidation of a Real-World environment. Cereb. Cortex. 29, 2748–2758. https://doi.org/10.1093/cercor/bhz044 (2019).
Chrastil, E. R., Sherrill, K. R., Aselcioglu, I., Hasselmo, M. E. & Stern, C. E. Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex. eNeuro 4 (2017). https://doi.org/10.1523/ENEURO.0346-16.2017
Chrastil, E. R., Sherrill, K. R., Hasselmo, M. E. & Stern, C. E. There and back again: hippocampus and retrosplenial cortex track homing distance during human path integration. J. Neurosci. 35, 15442–15452. https://doi.org/10.1523/JNEUROSCI.1209-15.2015 (2015).
Wolbers, T., Wiener, J. M., Mallot, H. A. & Buchel, C. Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. J. Neurosci. 27, 9408–9416. https://doi.org/10.1523/JNEUROSCI.2146-07.2007 (2007).
Shrager, Y., Kirwan, C. B. & Squire, L. R. Neural basis of the cognitive map: path integration does not require hippocampus or entorhinal cortex. Proc. Natl. Acad. Sci. U S A. 105, 12034–12038. https://doi.org/10.1073/pnas.0805414105 (2008).
Kim, S., Sapiurka, M., Clark, R. E. & Squire, L. R. Contrasting effects on path integration after hippocampal damage in humans and rats. Proc. Natl. Acad. Sci. U S A. 110, 4732–4737. https://doi.org/10.1073/pnas.1300869110 (2013).
Segen, V., Ying, J., Morgan, E., Brandon, M. & Wolbers, T. Path integration in normal aging and alzheimer’s disease. Trends Cogn. Sci. 26, 142–158. https://doi.org/10.1016/j.tics.2021.11.001 (2022).
Howett, D. et al. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766. https://doi.org/10.1093/brain/awz116 (2019).
Iaria, G., Petrides, M., Dagher, A., Pike, B. & Bohbot, V. D. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J. Neurosci. 23, 5945–5952. https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003 (2003).
Marchette, S. A., Bakker, A. & Shelton, A. L. Cognitive mappers to creatures of habit: differential engagement of place and response learning mechanisms predicts human navigational behavior. J. Neurosci. 31, 15264–15268. https://doi.org/10.1523/jneurosci.3634-11.2011 (2011).
Arnold, A. E., Burles, F., Bray, S., Levy, R. M. & Iaria, G. Differential neural network configuration during human path integration. Front. Hum. Neurosci. 8, 263. https://doi.org/10.3389/fnhum.2014.00263 (2014).
Spiers, H. J. & Gilbert, S. J. Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions. Front. Hum. Neurosci. 9, 125. https://doi.org/10.3389/fnhum.2015.00125 (2015).
Maguire, E. A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U S A. 97, 4398–4403. https://doi.org/10.1073/pnas.070039597 (2000).
Maguire, E. A., Woollett, K. & Spiers, H. J. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16, 1091–1101. https://doi.org/10.1002/hipo.20233 (2006).
Woollett, K. & Maguire, E. A. Acquiring the knowledge of london’s layout drives structural brain changes. Curr. Biol. 21, 2109–2114. https://doi.org/10.1016/j.cub.2011.11.018 (2011).
Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F. & Epstein, R. A. Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23, 515–528. https://doi.org/10.1002/hipo.22111 (2013).
Brown, T. I., Whiteman, A. S., Aselcioglu, I. & Stern, C. E. Structural differences in hippocampal and prefrontal Gray matter volume support flexible context-dependent navigation ability. J. Neurosci. 34, 2314–2320. https://doi.org/10.1523/JNEUROSCI.2202-13.2014 (2014).
Ezzati, A. et al. Differential association of left and right hippocampal volumes with verbal episodic and Spatial memory in older adults. Neuropsychologia 93, 380–385. https://doi.org/10.1016/j.neuropsychologia.2016.08.016 (2016).
Chen, K. H., Chuah, L. Y., Sim, S. K. & Chee, M. W. Hippocampal region-specific contributions to memory performance in normal elderly. Brain Cogn. 72, 400–407. https://doi.org/10.1016/j.bandc.2009.11.007 (2010).
Head, D. & Isom, M. Age effects on wayfinding and route learning skills. Behav. Brain Res. 209, 49–58. https://doi.org/10.1016/j.bbr.2010.01.012 (2010).
Driscoll, I. et al. The aging hippocampus: cognitive, biochemical and structural findings. Cereb. Cortex. 13, 1344–1351. https://doi.org/10.1093/cercor/bhg081 (2003).
Korthauer, L. E. et al. Correlates of virtual navigation performance in older adults. Neurobiol. Aging. 39, 118–127. https://doi.org/10.1016/j.neurobiolaging.2015.12.003 (2016).
Konishi, K. & Bohbot, V. D. Spatial navigational strategies correlate with Gray matter in the hippocampus of healthy older adults tested in a virtual maze. Front. Aging Neurosci. 5, 1. https://doi.org/10.3389/fnagi.2013.00001 (2013).
Sodums, D. J. & Bohbot, V. D. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging. Hippocampus 30, 892–908. https://doi.org/10.1002/hipo.23210 (2020).
de Toledo-Morrell, L. et al. Hemispheric differences in hippocampal volume predict verbal and Spatial memory performance in patients with alzheimer’s disease. Hippocampus 10, 136–142. https://doi.org/10.1002/(SICI)1098-1063(2000)10:2%3C136 (2000). :AID-HIPO2>3.0.CO;2-J
Nedelska, Z. et al. Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U S A. 109, 2590–2594. https://doi.org/10.1073/pnas.1121588109 (2012).
deIpolyi, A. R., Rankin, K. P., Mucke, L., Miller, B. L. & Gorno-Tempini, M. L. Spatial cognition and the human navigation network in AD and MCI. Neurology 69, 986–997. https://doi.org/10.1212/01.wnl.0000271376.19515.c6 (2007).
Maguire, E. A. et al. Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13, 250–259. https://doi.org/10.1002/hipo.10087 (2003).
Clark, I. A. et al. Does hippocampal volume explain performance differences on hippocampal-dependant tasks? Neuroimage 221, 117211 (2020). https://doi.org/10.1016/j.neuroimage.2020.117211
Weisberg, S. M., Newcombe, N. S. & Chatterjee, A. Everyday taxi drivers: do better navigators have larger hippocampi? Cortex 115, 280–293. https://doi.org/10.1016/j.cortex.2018.12.024 (2019).
Alina, S. et al. Chrastil. Do total hippocampus and hippocampal subfield volumes relate to navigation ability? A call towards methodological consistency. Cortex https://doi.org/10.1016/j.cortex.2024.08.011 (2024).
He, Q. & Brown, T. I. Heterogeneous correlations between hippocampus volume and cognitive map accuracy among healthy young adults. Cortex 124, 167–175. https://doi.org/10.1016/j.cortex.2019.11.011 (2020).
Nasreddine, Z. S. et al. The Montreal cognitive Assessment, moca: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x (2005).
Cheng, X. et al. Associations between brain structures, cognition and dual-task performance in patients with mild cognitive impairment: A study based on voxel-based morphology. Hum. Mov. Sci. 97, 103257. https://doi.org/10.1016/j.humov.2024.103257 (2024).
Gao, Y. et al. Changes of brain structure in parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci. Lett. 658, 121–132. https://doi.org/10.1016/j.neulet.2017.08.028 (2017).
Del Brutto, O. H., Mera, R. M., Zambrano, M., Soriano, F. & Lama, J. Global cortical atrophy (GCA) associates with worse performance in the Montreal cognitive assessment (MoCA). A population-based study in community-dwelling elders living in rural Ecuador. Arch. Gerontol. Geriatr. 60, 206–209. https://doi.org/10.1016/j.archger.2014.09.010 (2015).
Paul, R. et al. Neuroimaging signatures and cognitive correlates of the Montreal cognitive assessment screen in a nonclinical elderly sample. Arch. Clin. Neuropsychol. 26, 454–460. https://doi.org/10.1093/arclin/acr017 (2011).
Liang, L. et al. Structural and functional hippocampal changes in subjective cognitive decline from the community. Front. Aging Neurosci. 12, 64. https://doi.org/10.3389/fnagi.2020.00064 (2020).
Liang, X. et al. The role of MRI biomarkers and their interactions with cognitive status and APOE epsilon4 in nondemented elderly subjects. Neurodegener Dis. 18, 270–280. https://doi.org/10.1159/000495754 (2018).
Feng, Q. et al. Machine learning classifiers and associations of cognitive performance with hippocampal subfields in amnestic mild cognitive impairment. Front. Aging Neurosci. 15, 1273658. https://doi.org/10.3389/fnagi.2023.1273658 (2023).
Ritter, A., Hawley, N., Banks, S. J. & Miller, J. B. The association between Montreal cognitive assessment memory scores and hippocampal volume in a neurodegenerative disease sample. J. Alzheimers Dis. 58, 695–699. https://doi.org/10.3233/JAD-161241 (2017).
Xiao, Y., Hu, Y. & Huang, K. Alzheimer’s disease Neuroimaging, I. Atrophy of hippocampal subfields relates to memory decline during the pathological progression of alzheimer’s disease. Front. Aging Neurosci. 15, 1287122. https://doi.org/10.3389/fnagi.2023.1287122 (2023).
Gupta, M. et al. Association of 3.0-T brain magnetic resonance imaging biomarkers with cognitive function in the Dallas heart study. JAMA Neurol. 72, 170–175. https://doi.org/10.1001/jamaneurol.2014.3418 (2015).
Colombo, G. et al. Detecting cognitive impairment through an age-friendly serious game: the development and usability of the Spatial performance assessment for cognitive evaluation (SPACE). Comput. Hum. Behav. 160 https://doi.org/10.1016/j.chb.2024.108349 (2024).
Tian, N., Colombo, G. & Schinazi, V. From play to detection: Mini-SPACE as a serious game for unsupervised Cognitive Impairment screening. arXiv https://doi.org/10.48550/arXiv.2511.12068 (2025),
Colombo, G. et al. Spatial navigation as a digital marker for clinically differentiating cognitive impairment severity. MedRxiv https://doi.org/10.1101/2025.06.05.25329079 (2025).
Colombo, G. et al. Beyond Traditional Assessments of Cognitive Impairment: Exploring the Potential of Spatial Navigation Tasks. MedRxiv https://doi.org/10.1101/2024.10.12.24315402 (2024).
Rana, A. K. et al. A comparison of measurement methods of hippocampal atrophy rate for predicting alzheimer’s dementia in the Aberdeen birth cohort of 1936. Alzheimers Dement. (Amst). 6, 31–39. https://doi.org/10.1016/j.dadm.2016.11.007 (2017).
Ezekiel, F. et al. Comparisons between global and focal brain atrophy rates in normal aging and alzheimer disease: boundary shift integral versus tracing of the entorhinal cortex and hippocampus. Alzheimer Dis. Assoc. Disord. 18, 196–201 (2004).
Scahill, R. I. et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 60, 989–994. https://doi.org/10.1001/archneur.60.7.989 (2003).
Takeda, S. & Matsuzawa, T. Age-related brain atrophy: a study with computed tomography. J. Gerontol. 40, 159–163. https://doi.org/10.1093/geronj/40.2.159 (1985).
Whitwell, J. L. et al. Rates of cerebral atrophy differ in different degenerative pathologies. Brain 130, 1148–1158. https://doi.org/10.1093/brain/awm021 (2007).
Henneman, W. J. et al. Hippocampal atrophy rates in alzheimer disease: added value over whole brain volume measures. Neurology 72, 999–1007. https://doi.org/10.1212/01.wnl.0000344568.09360.31 (2009).
Duara, R. et al. Medial Temporal lobe atrophy on MRI scans and the diagnosis of alzheimer disease. Neurology 71, 1986–1992. https://doi.org/10.1212/01.wnl.0000336925.79704.9f (2008).
Noble, K. G. et al. Hippocampal volume varies with educational attainment across the life-span. Front. Hum. Neurosci. 6, 307. https://doi.org/10.3389/fnhum.2012.00307 (2012).
Shpanskaya, K. S. et al. Educational attainment and hippocampal atrophy in the alzheimer’s disease neuroimaging initiative cohort. J. Neuroradiol. 41, 350–357. https://doi.org/10.1016/j.neurad.2013.11.004 (2014).
Sharp, E. S. & Gatz, M. Relationship between education and dementia: an updated systematic review. Alzheimer Dis. Assoc. Disord. 25, 289–304. https://doi.org/10.1097/WAD.0b013e318211c83c (2011).
Devanand, D. P. et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of alzheimer disease. Neurology 68, 828–836. https://doi.org/10.1212/01.wnl.0000256697.20968.d7 (2007).
Kim, H. B. et al. Modulation of associations between education years and cortical volume in alzheimer’s disease vulnerable brain regions by Abeta deposition and APOE epsilon4 carrier status in cognitively normal older adults. Front. Aging Neurosci. 15, 1248531. https://doi.org/10.3389/fnagi.2023.1248531 (2023).
Whishaw, I. Q., McKenna, J. E. & Maaswinkel, H. Hippocampal lesions and path integration. Curr. Opin. Neurobiol. 7, 228–234. https://doi.org/10.1016/s0959-4388(97)80011-6 (1997).
McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M. B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678. https://doi.org/10.1038/nrn1932 (2006).
Worsley, C. L. et al. Path integration following Temporal lobectomy in humans. Neuropsychologia 39, 452–464. https://doi.org/10.1016/s0028-3932(00)00140-8 (2001).
Sherrill, K. R. et al. Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. J. Neurosci. 33, 19304–19313. https://doi.org/10.1523/JNEUROSCI.1825-13.2013 (2013).
Moffat, S. D., Kennedy, K. M., Rodrigue, K. M. & Raz, N. Extrahippocampal contributions to age differences in human Spatial navigation. Cereb. Cortex. 17, 1274–1282. https://doi.org/10.1093/cercor/bhl036 (2007).
Baumann, O. & Mattingley, J. B. Extrahippocampal contributions to Spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus 31, 640–657. https://doi.org/10.1002/hipo.23313 (2021).
Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G. & Zijdenbos, A. P. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J. Neurosci. 27, 10078–10083. https://doi.org/10.1523/JNEUROSCI.1763-07.2007 (2007).
Cleves, M., Gould, W. & Guiererez, R. G. An Introduction To Survival Analysis Using Stata (Vol. Revised Edition (Stata, 2004).
Burgess, N. Spatial memory: how egocentric and allocentric combine. Trends Cogn. Sci. 10, 551–557. https://doi.org/10.1016/j.tics.2006.10.005 (2006).
Waller, D. & Hodgson, E. Transient and enduring Spatial representations under disorientation and self-rotation. J. Exp. Psychol. Learn. Mem. Cogn. 32, 867–882. https://doi.org/10.1037/0278-7393.32.4.867 (2006).
Duff, K. et al. Short-term repeat cognitive testing and its relationship to hippocampal volumes in older adults. J. Clin. Neurosci. 57, 121–125. https://doi.org/10.1016/j.jocn.2018.08.015 (2018).
Sue, K., Hirabayashi, H., Osawa, M. & Komatsu, T. Relationship between neuropsychological test scores and hippocampal atrophy in non-demented Japanese older adults. Interdiscip Neurosur. 30 https://doi.org/10.1016/j.inat.2022.101605 (2022).
Frank, L. M., Brown, E. N. & Wilson, M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178. https://doi.org/10.1016/s0896-6273(00)00018-0 (2000).
Solstad, T., Boccara, C. N., Kropff, E. & Moser, M. B. Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868. https://doi.org/10.1126/science.1166466 (2008).
Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661. https://doi.org/10.1038/nature08704 (2010).
Rodrigue, K. M. & Raz, N. Shrinkage of the entorhinal cortex over five years predicts memory performance in healthy adults. J. Neurosci. 24, 956–963. https://doi.org/10.1523/JNEUROSCI.4166-03.2004 (2004).
Newton, C. et al. Entorhinal-based path integration selectively predicts midlife risk of alzheimer’s disease. Alzheimers Dement. 20, 2779–2793. https://doi.org/10.1002/alz.13733 (2024).
Laczo, M. et al. Spatial navigation questionnaires as a supportive diagnostic tool in early alzheimer’s disease. iScience 27, 109832. https://doi.org/10.1016/j.isci.2024.109832 (2024).
Hyde, J. S. The gender similarities hypothesis. Am. Psychol. 60, 581–592. https://doi.org/10.1037/0003-066X.60.6.581 (2005).
Lawton, C. A. & Gender Spatial Abilities, and Wayfinding. Gender Research in General and Experimental Psychology. 1, 317–341 (2010). https://doi.org/10.1007/978-1-4419-1465-1_16
Nazareth, A., Huang, X., Voyer, D. & Newcombe, N. A meta-analysis of sex differences in human navigation skills. Psychon Bull. Rev. 26, 1503–1528. https://doi.org/10.3758/s13423-019-01633-6 (2019).
Munion, A. K., Stefanucci, J. K., Rovira, E., Squire, P. & Hendricks, M. Gender differences in Spatial navigation: characterizing wayfinding behaviors. Psychon Bull. Rev. 26, 1933–1940. https://doi.org/10.3758/s13423-019-01659-w (2019).
Lawton, C. A. & Kallai, J. Gender differences in wayfinding strategies and anxiety about wayfinding: A Cross-Cultural comparison. Sex. Roles. 47, 389–401. https://doi.org/10.1023/a:1021668724970 (2002).
Boone, A. P., Gong, X. & Hegarty, M. Sex differences in navigation strategy and efficiency. Mem. Cognit. 46, 909–922. https://doi.org/10.3758/s13421-018-0811-y (2018).
Picucci, L., Caffò, A. O. & Bosco, A. Besides navigation accuracy: gender differences in strategy selection and level of Spatial confidence. J. Environ. Psychol. 31, 430–438. https://doi.org/10.1016/j.jenvp.2011.01.005 (2011).
Lawton, C. A. Gender differences in way-finding strategies: relationship to Spatial ability and Spatial anxiety. Sex. Roles. 30, 765–779. https://doi.org/10.1007/bf01544230 (1994).
Gavrielidou, E. & Lamers, M. H. Landmarks and Time-Pressure in Virtual Navigation: Towards Designing Gender-Neutral Virtual Environments. International Conference on Facets of Virtual Environments 60–67 (2010). https://doi.org/10.1007/978-3-642-11743-5_5
Schinazi, V. R. et al. Motivation moderates gender differences in navigation performance. Sci. Rep. 13, 15995. https://doi.org/10.1038/s41598-023-43241-4 (2023).
Ross, S. P., Skelton, R. W. & Mueller, S. C. Gender differences in Spatial navigation in virtual space: implications when using virtual environments in instruction and assessment. Virtual Real. 10, 175–184. https://doi.org/10.1007/s10055-006-0041-7 (2006).
Padilla, L. M., Creem-Regehr, S. H., Stefanucci, J. K. & Cashdan, E. A. Sex differences in virtual navigation influenced by scale and navigation experience. Psychon. Bull. Rev. 24, 582–590. https://doi.org/10.3758/s13423-016-1118-2 (2017).
Saucier, D., Bowman, M. & Elias, L. Sex differences in the effect of articulatory or Spatial dual-task interference during navigation. Brain Cogn. 53, 346–350. https://doi.org/10.1016/s0278-2626(03)00140-4 (2003).
Coutrot, A. et al. Global determinants of navigation ability. Curr. Biol. 28, 2861–2866e2864. https://doi.org/10.1016/j.cub.2018.06.009 (2018).
Global Gender Gap Report. : Insight Report. 395 (World Economic Forum, 2025). (2025).
Broekhuis, M., van Velsen, L., Stal, S., Weldink, J. & Tabak, M. ter in 5th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2019. 48–57 (SCITEPRESS).
Marston, H. R. Design recommendations for digital game design within an ageing society. Educ. Gerontol. 39, 103–118. https://doi.org/10.1080/03601277.2012.689936 (2013). https://doi.org/
Martinho, D., Carneiro, J., Corchado, J. M. & Marreiros, G. A systematic review of gamification techniques applied to elderly care. Artif. Intell. Rev. 53, 4863–4901. https://doi.org/10.1007/s10462-020-09809-6 (2020).
Ijsselsteijn, W., Nap, H. H., De Kort, Y. & Poels, K. in Proceedings of the 2007 conference on Future Play. 17–22.
Czaja, S. J. Usability of technology for older adults: where are we and where do we need to be. J. Usability Stud. 14, 61–64 (2019).
Czaja, S. J., Boot, W. R., Charness, N. & Rogers, W. A. Designing for Older Adults: Principles and Creative Human Factors Approaches 3rd edn (CRC, 2019).
Lorenz, M., Brade, J., Klimant, P., Heyde, C. E. & Hammer, N. Age and gender effects on presence, user experience and usability in virtual environments–first insights. PLOS ONE. 18, e0283565. https://doi.org/10.1371/journal.pone.0283565 (2023).
Sonderegger, A., Schmutz, S. & Sauer, J. The influence of age in usability testing. Appl. Ergon. 52, 291–300. https://doi.org/10.1016/j.apergo.2015.06.012 (2016).
Hartley, T. & Harlow, R. An association between human hippocampal volume and topographical memory in healthy young adults. Front. Hum. Neurosci. 6 https://doi.org/10.3389/fnhum.2012.00338 (2012).
Farias, S. T. et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology 22, 531–544. https://doi.org/10.1037/0894-4105.22.4.531 (2008).
Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K. & Subbiah, I. Development of a self-report measure of environmental Spatial ability. Intelligence 30, 425–447 (2002).
Lovibond, P. F. & Lovibond, S. H. The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behav. Res. Ther. 33, 335–343. https://doi.org/10.1016/0005-7967(94)00075-u (1995).
Mohs, R. C. et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the alzheimer’s disease assessment scale that broaden its scope. The alzheimer’s disease cooperative study. Alzheimer Dis. Assoc. Disord. 11 (Suppl 2), S13–21 (1997).
Reitan, R. M. W. Deborah. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation Vol. 4 (Neuropsychology, 1985).
Della Sala, S., Foley, J. A., Beschin, N., Allerhand, M. & Logie, R. H. Assessing dual-task performance using a paper-and-pencil test: normative data. Arch. Clin. Neuropsychol. 25, 410–419. https://doi.org/10.1093/arclin/acq039 (2010).
Foley, J. A., Kaschel, R., Logie, R. H. & Della Sala, S. Dual-task performance in alzheimer’s disease, mild cognitive impairment, and normal ageing. Arch. Clin. Neuropsychol. 26, 340–348. https://doi.org/10.1093/arclin/acr032 (2011).
Friedman, A. & Kohler, B. Bidimensional regression: assessing the configural similarity and accuracy of cognitive maps and other Two-Dimensional data sets. Psychol. Methods. 8, 468–491. https://doi.org/10.1037/1082-989x.8.4.468 (2003).
Tobler, W. R. Computation of the correspondence of geographical patterns. Papers Reg. Sci. Association. 15, 131–139. https://doi.org/10.1007/bf01947869 (1965).
Acknowledgements
The research was conducted in the Future Health Technologies programme, which was established collaboratively between ETH Zurich and the National Research Foundation Singapore. This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and ETH Zürich. The authors would like to thank the Lions Befrienders Service Association for facilitating the recruitment process and Dr. Andrea Ferrario for his insightful consultation and guidance in statistical analysis.
Funding
This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme and ETH Zürich. Specifically, this work was supported by the Intra-CREATE Seed Collaboration Grant (NRF2022-ITS010-0006).
Author information
Authors and Affiliations
Contributions
K.M., G.C., S.H., and V.R.S. designed the study and supervised the project. M.T. and M.L. led the recruitment of participants and data collection. M.T. processed the brain imaging data. K.M., G.C., and V.R.S. performed data analysis. K.M., G.C., and V.R.S. wrote the original draft of the manuscript. K.M., G.C., M.T., M.L., J.G., J.W., C.P.C., S.H., and V.R.S. discussed the results and contributed to the final manuscript. K.M. and S.H. acquired the financial support for the project, which led to this publication.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Minta, K., Colombo, G., Tee, M. et al. SPACE: A novel digital tool for assessing hippocampal structural integrity in older adults. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39628-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39628-8