Abstract
Synthetic dyes are persistent pollutants resistant to conventional treatment, necessitating effective removal strategies. This study examines the adsorption of Crystal Violet (CV) onto a ZIF-8/graphene quantum dot (Z8GD) composite under varying conditions. Batch experiments revealed strong sensitivity to operational parameters, with capacities ranging from 76 to 971 mg/g. Adsorption capacity increased from 195 to 460 mg/g as the dose decreased (0.10 → 0.04 g/L), from 200 to 401 mg/g with higher CV concentration (25 → 75 ppm), and from 162 to 971 mg/g with longer shaking time (3 → 24 h). Response Surface Methodology identified these factors as highly significant (p < 0.0001) and yielded a robust predictive model (R² = 0.9869). Kinetic analysis showed that the Avrami model (R² = 0.9993) best described the process, suggesting multi-mechanistic uptake. The maximum adsorption capacity reached ~ 7162 mg/g, with the Redlich–Peterson isotherm providing the best fit (R² = 0.9969). Thermodynamic analysis indicated an endothermic process (ΔH = 20.9 kJ/mol), with Gibbs free energy becoming more negative at higher temperatures (ΔG = − 30.6 to − 33.9 kJ/mol). Post-adsorption XRD and FTIR confirmed Z8GD’s structural stability and revealed multiple interactions, including π–π/CH–π stacking, hydrogen bonding, and electrostatic attraction. Machine learning models further enhanced predictive capability, with the SVR + XGB hybrid achieving the highest accuracy (R² = 0.9986). Shapley Additive Explanations identified shaking time and initial dye concentration as the most influential variables. Overall, Z8GD demonstrated exceptional adsorption capacity and mechanistic versatility, while the integration of RSM and ML provided both optimization and interpretability for adsorption behavior.
Data availability
Data will be made available on request from the corresponding author.
References
Singh, B. J., Chakraborty, A. & Sehgal, R. A systematic review of industrial wastewater management: evaluating challenges and enablers. J. Environ. Manage. 348, 119230 (2023).
du Plessis, A. Persistent degradation: global water quality challenges and required actions. One Earth. 5, 129–131 (2022).
Mittal, A., Mittal, J., Malviya, A., Kaur, D. & Gupta, V. K. Adsorption of hazardous dye crystal Violet from wastewater by waste materials. J. Colloid Interface Sci. 343, 463–473 (2010).
Shabna, S., Singh, C. J. C., Dhas, S. D. S. J., Jeyakumar, S. C. & Biju, C. S. An overview of prominent factors influencing the photocatalytic degradation of cationic crystal Violet dye employing diverse nanostructured materials. J. Chem. Technol. Biotechnol. 99, 1027–1055 (2024).
Littlefield, N. A., Blackwell, B. N., Hewitt, C. C. & Gaylor, D. W. Chronic toxicity and carcinogenicity studies of Gentian Violet in mice. Fundam. Appl. Toxicol. 5, 902–912 (1985).
Zourif, A., Kouniba, S. & El Guendouzi, M. Valorization of palm petiole waste as natural biocoagulants: optimizing coagulation-flocculation for sustainable wastewater treatment and advancing circular economy in agriculture. Biocatal. Agric. Biotechnol. 63, 103473 (2025).
Wu, J. S., Liu, C. H., Chu, K. H. & Suen, S. Y. Removal of cationic dye Methyl Violet 2B from water by cation exchange membranes. J. Memb. Sci. 309, 239–245 (2008).
Yassin, M. T., Al-Otibi, F. O. & Al-Askar, A. A. Photocatalytic removal of crystal Violet dye utilizing Greenly synthesized iron oxide nanoparticles. Separations 10, 513 (2023).
Salman, A. B., Al-khateeb, R. T. & Abdulqahar, S. N. Electrochemical removal of crystal Violet dye from simulated wastewater by stainless steel rotating cylinder anode: COD reduction and decolorization. Desalin. Water Treat. 320, 100787 (2024).
Wan, H. et al. Adsorptive nanofibrous membranes for bidirectional removal of cationic and anionic dyes. Sep. Purif. Technol. 361, 131515 (2025).
Tang, L. et al. Efficient adsorption of crystal Violet by different temperature pyrolyzed biochar-based sodium alginate microspheres: A green solution for food industry dye removal. Food Chem. X. 26, 102311 (2025).
Faruque, M. O., Hussaini, M., Hossain, M. M., Nzila, A. & Razzak, S. A. Biosorption of Cd(II) from aqueous solutions using microalgae chlorella Sorokiniana dry biomass: A sustainable approach for water remediation. J. Environ. Chem. Eng. 13, 118129 (2025).
Ismail, U. M., Hussaini, M. & Vohra, M. S. H2S and SO2 toxic gases removal using date palm-tree branches based activated carbon: experimental findings and machine learning (ML) modeling. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-024-05847-0 (2024).
Sabbagh, M. et al. Novel nafion-palygorskite composite for Pb/Lead treatment. Int. J. Environ. Sci. Technol. 22, 879–894 (2025).
El Bourachdi, S. et al. Optimization of the degree of deacetylation of Chitosan beads for efficient anionic dye adsorption: kinetics, thermodynamics, mechanistic insights via DFT analysis, and regeneration performance. Environ. Sci. Pollut. Res. 32, 7950–7975 (2025).
Ganiyu, S. A., Suleiman, M. A., Al-Amrani, W. A., Usman, A. K. & Onaizi, S. A. Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework composites: A comprehensive and Up-to-date review. Sep. Purif. Technol. 318, 123765 (2023).
Nazir, M. A. et al. Zeolitic imidazolate frameworks (ZIF-8 & ZIF-67): synthesis and application for wastewater treatment. Sep. Purif. Technol. 356, 129828 (2025).
Ahmad, U. et al. ZIF-8 Composites for the Removal of Wastewater Pollutants. ChemistrySelect. 9, (2024).
Yang, B., Xing, H., Xia, Y., Wang, X. & Liu, N. Fabrication of PVDF/ZIF-8 Composite Membrane via In‐Situ Growth for Adsorptive Removal of Methyl Green from Aqueous Solution. ChemistrySelect. 10, (2025).
Lee, K. et al. Multiporous ZIF-8 carbon/cellulose composite beads: highly efficient and scalable adsorbents for water treatment. Carbohydr. Polym. 335, 122047 (2024).
Ying, Y., He, P., Ding, G. & Peng, X. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum Dots. Nanotechnology 27, 245703 (2016).
Rabeie, B., Mahmoodi, N. M. & Mahkam, M. Morphological diversity effect of graphene quantum dot/MIL88A(Fe) composites on dye and pharmaceuticals (tetracycline and doxycycline) removal. J. Environ. Chem. Eng. 10, 108321 (2022).
Tohamy, H. A. S., Fathy, N. A., El-Sakhawy, M. & Kamel, S. Boosting the adsorption capacity and photocatalytic activity of activated carbon by graphene quantum Dots and titanium dioxide. Diam. Relat. Mater. 132, 109640 (2023).
Ibrahim, A. I., Onaizi, S. A. & Vohra, M. S. Incorporation of surfactant-intercalated graphene oxide into zeolitic imidazolate framework-9 for effective heavy metal and dye removal from wastewater: RSM optimization and ANN modeling. Results Eng. 27, 106411 (2025).
de Soares, M. R., de Oliveira Carvalho, A. P., de Farias Silva, F., da Silva Gonçalves, C. E., de Souza Abud, A. K. & A. H. & Random forest as a promising application to predict basic-dye biosorption process using orange waste. J. Environ. Chem. Eng. 8, 103952 (2020).
Liang, H., Jiang, K., Yan, T. A., Chen, G. H. & XGBoost An optimal machine learning model with just structural features to discover MOF adsorbents of Xe/Kr. ACS Omega. 6, 9066–9076 (2021).
Elbager, M. A. et al. Development of methacrylamide/methylmethacrylate copolymer modified biomass-carbon for superior congo red adsorption: leveraging RSM and machine learning for optimization and mechanistic insights. J. Mol. Liq. 438, 128594 (2025).
Louhichi, M., Nesmaoui, R., Mbarek, M. & Lazaar, M. Shapley values for explaining the black box nature of machine learning model clustering. Procedia Comput. Sci. 220, 806–811 (2023).
Liu, C., Balasubramanian, P., An, J. & Li, F. Machine learning prediction of ammonia nitrogen adsorption on Biochar with model evaluation and optimization. NPJ Clean. Water. 8, 13 (2025).
Xie, C., Xie, Y., Zhang, C., Dong, H. & Zhang, L. Explainable machine learning for carbon dioxide adsorption on porous carbon. J. Environ. Chem. Eng. 11, 109053 (2023).
Shi, S. et al. Interpreting machine learning predictions of Pb2 + adsorption onto biochars produced by a fluidized bed system. J. Clean. Prod. 486, 144551 (2025).
Helena, L., Ningthoujam, S. & Kumar, P. A. Sustainable water purification: evaluating Phumdi biomass adsorbent performance through machine learning-based feature analysis. Clean. Technol. Environ. Policy. 27, 4375–4400 (2025).
Giri, L. et al. Recent advancements in metal–organic frameworks integrating quantum Dots (QDs@MOF) and their potential applications. Nanotechnol Rev. 11, 1947–1976 (2022).
Ahmad, I. et al. Zeolite imidazole framework entrapped quantum Dots (QDs@ZIF-8): encapsulation, properties, and applications. J. Taiwan. Inst. Chem. Eng. 149, 104993 (2023).
Rabeie, B., Mahkam, M., Mahmoodi, N. M. & Lan, C. Q. Graphene quantum Dot incorporation in the zeolitic imidazolate framework with sodalite (SOD) topology: synthesis and improving the adsorption ability in liquid phase. J. Environ. Chem. Eng. 9, 106303 (2021).
Guo, X. et al. Magnetic metal-organic frameworks/carbon Dots as a multifunctional platform for detection and removal of uranium. Appl. Surf. Sci. 491, 640–649 (2019).
Zhou, Q., Jin, B., Zhao, P., Chu, S. & Peng, R. rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater. Chem. Eng. J. 419, 129622 (2021).
Li, H. et al. Preparation and Adsorption Performance Study of Graphene Quantum Dots@ZIF-8 Composites for Highly Efficient Removal of Volatile Organic Compounds. Nanomaterials. 12, (2022).
Hussaini, M., Vohra, M. S. & Onaizi, S. A. Investigating the removal of congo red dye using ZIF-8 and GQD composite: Characterization, kinetics, isotherm, thermodynamics, optimization, and machine learning studies. Colloids Surf. Physicochem Eng. Asp. 726, 137915 (2025).
Xiao, W., Yan, B., Zeng, H. & Liu, Q. Dendrimer functionalized graphene oxide for selenium removal. Carbon N Y. 105, 655–664 (2016).
El Bourachdi, S. et al. Synthesis and characterization of avocado pit activated carbon-incorporated Chitosan composite beads for Harnessing methylene blue adsorption: DFT insights and box-behnken design optimization. J. Taiwan. Inst. Chem. Eng. 173, 106142 (2025).
Box, G. E. P. & Cox, D. R. An analysis of transformations. J. Roy. Stat. Soc.: Ser. B (Methodol.). 26, 211–243 (1964).
Vohra, M. S. & Labaran, B. A. Photocatalytic treatment of mixed selenocyanate and phenol streams: process modeling, optimization, and kinetics. Environ. Prog Sustain. Energy. 39, 1–11 (2020).
Hussaini, M. & Vohra, M. LDH-TiO2 composite for selenocyanate (SeCN–) photocatalytic degradation: Characterization, treatment Efficiency, reaction intermediates and modeling. Nanomaterials 12, 2035 (2022).
Ibrahim, A. I., Vohra, M. S. & Onaizi, S. A. Integration of surfactant-modified graphene oxide with metal-organic framework-9 for enhancing chromium(VI) adsorption from aqueous media. J. Taiwan. Inst. Chem. Eng. 179, 106427 (2026).
Moradi, M. et al. Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent. Archives Environ. Prot. 42, 33–43 (2016).
Vohra, M., Hussaini, M. & Mohammad, T. Olive branches activated carbon: synthesis, phenol adsorption and modeling. Chem. Pap. 77, 485–498 (2023).
Sabna, V., Thampi, S. G. & Chandrakaran, S. Adsorption of crystal Violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 134, 390–397 (2016).
Oluwasina, O. O., Adelodun, A. A., Oluwasina, O. O., Duarte, H. A. & Olusegun, S. J. Experimental and computational studies of crystal Violet removal from aqueous solution using sulfonated graphene oxide. Sci. Rep. 14, 6207 (2024).
Abegunde, S. M., Olasehinde, E. F. & Adebayo, M. A. Green synthesis of ZnO nanoparticles using nauclea latifolia fruit extract for adsorption of congo red. Hybrid. Adv. 5, 100164 (2024).
Thamer, B. M., Al-aizari, F. A., Abdo, H. S. & Al-Enizi, A. M. Activated carbon-decorated electrospun polystyrene fibers for highly efficient removal of hazardous crystal Violet dye from water. Colloids Surf. Physicochem Eng. Asp. 688, 133612 (2024).
Abdul Hameed, M. M., Al-Aizari, F. A. & Thamer, B. M. Synthesis of a novel clay/polyacrylic acid-tannic acid hydrogel composite for efficient removal of crystal Violet dye with low swelling and high adsorption performance. Colloids Surf. Physicochem Eng. Asp. 684, 133130 (2024).
Habibi, M. K., Rafiaei, S. M., Alhaji, A. & Zare, M. Synthesis of ZnFe2O4: 1 wt% Ce3+/Carbon fibers composite and investigation of its adsorption characteristic to remove congo red dye from aqueous solutions. J. Alloys Compd. 890, 161901 (2022).
El Bourachdi, S. et al. Cactus cladodes as a renewable source of cellulose for the adsorption of Safranin O and acid blue 25 dyes: optimization of extraction parameters, comprehensive experimental investigation, and mechanistic interpretation via density functional theory (DFT). Int. J. Biol. Macromol. 337, 149438 (2026).
Gul, S., Afsar, S., Gul, H. & Ali, B. Removal of crystal Violet dye from wastewater using low-cost biosorbent trifolium repens stem powder. J. Iran. Chem. Soc. 20, 2781–2792 (2023).
Khakbaz, F., Mirzaei, M. & Mahani, M. Enhanced adsorption of crystal Violet using Bi 3+ – intercalated Cd-MOF: isotherm, kinetic and thermodynamic study. Part. Sci. Technol. 40, 1004–1016 (2022).
Huo, S. H. & Yan, X. P. Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22, 7449 (2012).
Czech, B., Shirvanimoghaddam, K., Trojanowska, E. & naebe, M. Sorption of pharmaceuticals and personal care products (PPCPs) onto a sustainable cotton based adsorbent. Sustain. Chem. Pharm. 18, 100324 (2020).
Wu, F. C., Tseng, R. L. & Juang, R. S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009).
Ali, A. E. H. From disposal problem to valuable product: the route of sewage sludge as an adsorbent for congo red removal. Biomass Convers. Biorefin. 14, 16035–16048 (2024).
dos Reis, G. S. et al. Synthesis of highly porous Lignin-Sulfonate Sulfur-Doped carbon for efficient adsorption of sodium diclofenac and synthetic effluents. Nanomaterials 14, 1374 (2024).
Ismail, U. M., Onaizi, S. A. & Vohra, M. S. Crystal Violet removal using ZIF-60: batch adsorption studies, mechanistic & machine learning modeling. Environ. Technol. Innov. 33, 103456 (2024).
Chu, K. H. et al. The Redlich–Peterson isotherm for aqueous phase adsorption: pitfalls in data analysis and interpretation. Chem. Eng. Sci. 285, 119573 (2024).
Boakye, P., Tran, H. N., Lee, D. S. & Woo, S. H. Effect of water washing pretreatment on property and adsorption capacity of macroalgae-derived Biochar. J. Environ. Manage. 233, 165–174 (2019).
Wu, Z. et al. Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal Violet. Chem. Eng. J. 426, 130776 (2021).
Sulthana, R. et al. Adsorption of Crystal Violet Dye from Aqueous Solution using Industrial Pepper Seed Spent: Equilibrium, Thermodynamic, and Kinetic Studies. Adsorption Science & Technology (2022). (2022).
El Bourachdi, S. et al. Green synthesis of high surface area of reduced graphene oxide via Aloe Vera extract: Characterization, DFT mechanistic insights, and enhanced Rhodamine B adsorption using Chitosan@EDTA@rGO composite. Surf. Interfaces. 73, 107524 (2025).
Zhao, S. et al. Preparation of MIL-88A micro/nanocrystals with different morphologies in different solvents for efficient removal of congo red from water: Synthesis, characterization, and adsorption mechanisms. Microporous Mesoporous Mater. 345, 112241 (2022).
Yan, L., Gloor, C. J., Moran, A. M. & You, W. Non-covalent interactions involving π effect between organic cations in low-dimensional organic/inorganic hybrid perovskites. Appl. Phys. Lett. 122, 240501 (2023).
Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132–145 (2010).
Wang, C., Dong, H., Jiang, L. & Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 47, 422–500 (2018).
Tang, M. et al. Tailoring π-Conjugated systems: from π-π stacking to High-Rate-Performance organic cathodes. Chem 4, 2600–2614 (2018).
Wathukarage, A., Herath, I., Iqbal, M. C. M. & Vithanage, M. Mechanistic Understanding of crystal Violet dye sorption by Woody biochar: implications for wastewater treatment. Environ. Geochem. Health. 41, 1647–1661 (2019).
Abdel-Hady, E. E. et al. Textural properties and adsorption behavior of Zn–Mg–Al layered double hydroxide upon crystal Violet dye removal as a low cost, effective, and recyclable adsorbent. Sci. Rep. 13, 6435 (2023).
Huang, Y. P. et al. Selective adsorption of crystal Violet via hydrogen bonded water bridges by InVO4. Chem. Eng. J. Adv. 15, 100508 (2023).
Ben Aissa, M. A., Modwi, A., Albadri, A. E. A. E. & Saleh, S. M. Dependency of crystal Violet dye removal behaviors onto mesoporous V2O5-g-C3N4 constructed by simplistic ultrasonic method. Inorganics (Basel). 11, 146 (2023).
Howard, A. A., Tschumper, G. S. & Hammer, N. I. Effects of hydrogen bonding on vibrational normal modes of pyrimidine. J. Phys. Chem. A. 114, 6803–6810 (2010).
Kannan, P. P. et al. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies. J. Mol. Struct. 1139, 196–201 (2017).
Deng, J. H. et al. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. Sci. Adv. 6, eaax9976 (2020).
Massoudinejad, M., Rasoulzadeh, H. & Ghaderpoori, M. Magnetic Chitosan nanocomposite: Fabrication, properties, and optimization for adsorptive removal of crystal Violet from aqueous solutions. Carbohydr. Polym. 206, 844–853 (2019).
Khan, A. et al. Removal of crystal Violet from wastewater using synthesized graphene quantum Dots as adsorbents: kinetic approach. Int. J. Environ. Sci. Technol. 20, 13219–13232 (2023).
Vithanage, M., Mayakaduwa, S. S., Herath, I., Ok, Y. S. & Mohan, D. Kinetics, thermodynamics and mechanistic studies of Carbofuran removal using biochars from tea waste and rice husks. Chemosphere 150, 781–789 (2016).
Chen, M. et al. π-π electron-donor-acceptor (EDA) interaction enhancing adsorption of Tetracycline on 3D PPY/CMC aerogels. Chem. Eng. J. 454, 140300 (2023).
Huang, B. et al. Enhanced adsorption capacity of Tetracycline on porous graphitic Biochar with an ultra-large surface area. RSC Adv. 13, 10397–10407 (2023).
Guo, S. et al. Synergistic effect of hydrogen bonding and π-π interaction for enhanced adsorption of Rhodamine B from water using corn straw Biochar. Environ. Pollut. 320, 121060 (2023).
Nasri, N. M. et al. New isostructural ZIFs for adsorption of crystal Violet. Inorg. Chem. Commun. 158, 111601 (2023).
Angela, S. et al. Facile synthesis of hierarchical porous ZIF-8@TiO2 for simultaneous adsorption and photocatalytic decomposition of crystal Violet. Environ. Nanotechnol Monit. Manag. 16, 100598 (2021).
Wang, Q. et al. Preparation of egg white@zeolitic imidazolate framework-8@polyacrylic acid aerogel and its adsorption properties for organic dyes. J. Solid State Chem. 292, 121656 (2020).
Nouioua, A. et al. Production of Biochar from Melia Azedarach seeds for the crystal Violet dye removal from water: combining of hydrothermal carbonization and pyrolysis. Bioengineered 14, 290–306 (2023).
Sharma, S. et al. Adsorption of cationic dyes onto Carrageenan and Itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. J. Hazard. Mater. 421, 126729 (2022).
Park, S. et al. Machine learning-based prediction of adsorption capacity of metal-doped and undoped activated carbon: assessing the role of metal doping. Chemosphere 366, 143495 (2024).
Long, X. et al. The application of machine learning methods for prediction of heavy metal by activated carbons, biochars, and carbon nanotubes. Chemosphere 354, 141584 (2024).
Hassija, V. et al. Interpreting Black-Box models: A review on explainable artificial intelligence. Cognit Comput. 16, 45–74 (2024).
Loulidi, I. et al. Adsorption of crystal Violet onto an agricultural waste residue: Kinetics, Isotherm, Thermodynamics, and mechanism of adsorption. Sci. World J. 2020, 1–9 (2020).
Al-Shahrani, S. Phenomena of Removal of Crystal Violet from Wastewater Using Khulays Natural Bentonite. J. Chem. 2020, 1–8 (2020).
Acknowledgements
This work was supported by the Interdisciplinary Research Center for Construction and Building Materials (IRC-CBM) at the King Fahd University of Petroleum & Minerals (KFUPM) under Research Grant # INCB2512. The authors would also like to thank the Civil and Environmental Engineering Department and the Chemical Engineering Department at KFUPM for providing the lab facilities.
Funding
This work was supported by the Interdisciplinary Research Center for Construction and Building Materials (IRC-CBM) at the King Fahd University of Petroleum & Minerals (KFUPM) under Research Grant # INCB2512.
Author information
Authors and Affiliations
Contributions
Author contributionsMinaam Hussaini: Writing – original draft, Formal analysis, Investigation, Methodology, Validation, Data curation, Visualization. Sagheer A. Onaizi: Writing – review & editing, Conceptualization, Methodology, Funding acquisition, Project administration, Resources, Supervision. Muhammad S. Vohra: Writing – review & editing, Conceptualization, Methodology, Funding acquisition, Project administration, Resources, Supervision.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Hussaini, M., Onaizi, S.A. & Vohra, M.S. High-capacity removal of crystal violet using ZIF-8/graphene quantum dot composite with RSM optimization and explainable machine learning. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39933-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39933-2