Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Climate and Atmospheric Science
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj climate and atmospheric science
  3. articles
  4. article
Sea spray driven CO2 efflux: modeling the effect of sea spray evaporation on carbonate chemistry and air-sea gas exchange
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 31 December 2025

Sea spray driven CO2 efflux: modeling the effect of sea spray evaporation on carbonate chemistry and air-sea gas exchange

  • Lucy Hendrickson1,
  • Leonel Romero1 &
  • Penny Vlahos1 

npj Climate and Atmospheric Science , Article number:  (2025) Cite this article

  • 1030 Accesses

  • 5 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Environmental sciences
  • Ocean sciences

Abstract

The air-sea interface is a major climate control for our planet. At high winds this boundary layer becomes turbulent and challenging to parameterize. Sea spray is only now emerging as an important but unaccounted for parameter in air-sea models. Here we apply state-of-the-art air-sea surface sea spray generation models coupled to a carbonate system model to predict the spray-driven flux of carbon dioxide (CO2) gas between the atmosphere and ocean at various wind speeds and sea states. When these droplets are injected into air, they experience gas exchange affected by both temperature equilibration and evaporation. The latter process leads to a super-saline and acidic droplet that removes dissolved inorganic carbonate and bicarbonate, chemically converting them to additional CO2 and thereby evading more CO2 than is predicted by traditional models that do not consider this process. At 40% evaporation, the droplet evicts all its dissolved inorganic carbon, which is a 100-fold increase in potential CO2 evasion. Evaporating sea spray acts as a significant feedback to ocean CO2 uptake and could serve important roles in episodic storm events and over longer planetary timescales.

Similar content being viewed by others

Global ocean carbon uptake enhanced by rainfall

Article Open access 29 August 2024

Asymmetric bubble-mediated gas transfer enhances global ocean CO2 uptake

Article Open access 25 November 2025

Impact of sampling depth on CO\(_{2}\) flux estimates

Article Open access 09 August 2024

Data availability

All data necessary to replicate the figures in this paper has been published with the model code for ease of access. This data can be found at: https://doi.org/10.5281/zenodo.17064961

Code availability

The model code can be found at: https://doi.org/10.5281/zenodo.17064961

References

  1. Fairall, C., Kepert, J. & Holland, G. The effect of sea spray on surface energy transports over the ocean. Glob. Atmos. Ocean Syst. 2, 121–142 (1995).

    Google Scholar 

  2. Andreas E. L. A New Sea Spray Generation Function for Wind Speeds up to 32 m s−1. 1998 (Accessed 29 August 2024) https://journals.ametsoc.org/view/journals/phoc/28/11/1520-0485_1998_028_2175_anssgf_2.0.co_2.xml

  3. Troitskaya, Y. et al. Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds. Sci. Rep. 7, 1614 (2017).

    Google Scholar 

  4. Deike, L., Reichl, B. G. & Paulot, F. A mechanistic sea spray generation function based on the sea state and the physics of bubble bursting. AGU Adv. 3, e2022AV000750 (2022).

    Google Scholar 

  5. Barr, B. W., Chen, S. S. & Fairall, C. W. Sea-state-dependent sea spray and air–sea heat fluxes in tropical cyclones: a new parameterization for fully coupled atmosphere–wave–ocean models. J. Atmos. Sci. 80, 933–960 (2023).

    Google Scholar 

  6. Andreas, E. L., Vlahos, P. & Monahan, E. C. The potential role of sea spray droplets in facilitating air-sea gas transfer. IOP Conf. Ser. 35, 012003 (2016).

    Google Scholar 

  7. de Leeuw, G., Neele, F. P., Hill, M., Smith, M. H. & Vignati, E. Production of sea spray aerosol in the surf zone. J. Geophys. Res. Atmos. 105, 29397–29409 (2000).

    Google Scholar 

  8. Erinin, M. A. et al. Spray generation by a plunging breaker. Geophys. Res. Lett. 46, 8244–8251 (2019).

    Google Scholar 

  9. Veron F., Hopkins C., Harrison E. L., Mueller J. A. Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett. 39. https://doi.org/10.1029/2012GL052603 (2012)

  10. Andreas, E. L. Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. Oceans 97, 11429–11441 (1992).

    Google Scholar 

  11. Staniec, A., Vlahos, P. & Monahan, E. C. The role of sea spray in atmosphere–ocean gas exchange. Nat. Geosci. 14, 593–598 (2021).

    Google Scholar 

  12. Richter D. H., Sullivan P. P. The sea spray contribution to sensible heat flux. https://doi.org/10.1175/JAS-D-13-0204.1 (2014).

  13. Andreas, E. L. Time constants for the evolution of sea spray droplets. Tellus B 42, 481–497 (1990).

    Google Scholar 

  14. Feistel, R. & Hellmuth, O. Irreversible thermodynamics of seawater evaporation. J. Mar. Sci. Eng. 12, 166 (2024).

    Google Scholar 

  15. Angle, K. J. et al. Acidity across the interface from the ocean surface to sea spray aerosol. Proc. Natl. Acad. Sci. USA 118, e2018397118 (2021).

    Google Scholar 

  16. Stumm W., Morgan J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 3rd edn (John Wiley & Sons, Inc. 1996).

  17. Wu, Y., Hain, M. P., Humphreys, M. P., Hartman, S. & Tyrrell, T. What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration? Biogeosciences 16, 2661–2681 (2019).

    Google Scholar 

  18. Andreas, E. L., Vlahos, P. & Monahan, E. C. Spray-mediated air-sea gas exchange: the governing time scales. J. Mar. Sci. Eng. 5, 60 (2017).

    Google Scholar 

  19. Frigaard, P. Wind generated ocean waves: I.R.Young, Elsevier Ocean Engineering Series, Vol. 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275.00 (US$ 139.50). Coast. Eng. 42, 103 (2001).

    Google Scholar 

  20. Andreas, E. L. An Algorithm for Fast Microphysical Calculations that Predict the Evolution of Saline Droplets. www.nwra.com/resumes/andreas/.software.php (2013).

  21. Anguelova, M., Barber, R. P. & Wu, J. Spume drops produced by the wind tearing of wave crests. J. Phys. Oceanogr. 29, 1156–1165 (1999).

    Google Scholar 

  22. Ortiz-Suslow, D. G., Haus, B. K., Mehta, S. & Laxague, N. J. M. Sea spray generation in very high winds. J. Atmos. Sci. 73, 3975–3995 (2016).

    Google Scholar 

  23. Romero, L. Distribution of surface wave breaking fronts. Geophys. Res. Lett. 46, 10463–10474 (2019).

    Google Scholar 

  24. Keene, W. C., Pszenny, A. A. P., Maben, J. R. & Sander, R. Variation of marine aerosol acidity with particle size. Geophys. Res. Lett. 29, 5-1–5-4 (2002).

    Google Scholar 

  25. Pszenny, A.aP. et al. Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos. Chem. Phys. 4, 147–168 (2004).

    Google Scholar 

  26. Bougiatioti, A. et al. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability. Atmos. Chem. Phys. 16, 4579–4591 (2016).

    Google Scholar 

  27. Zheng, G., Su, H. & Cheng, Y. Role of carbon dioxide, ammonia, and organic acids in buffering atmospheric acidity: the distinct contribution in clouds and aerosols. Environ. Sci. Technol. 57, 12571–12582 (2023).

    Google Scholar 

  28. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).

    Google Scholar 

  29. Wu, D., Wang, K., Zheng, C. & Guo, Y. Global strong winds occurrence characteristics and climate index correlation. J. Mar. Sci. Eng. 12, 706 (2024).

    Google Scholar 

  30. Nicholson, S. A. et al. Storms drive outgassing of CO2 in the subpolar Southern Ocean. Nat. Commun. 13, 158 (2022).

    Google Scholar 

  31. Toolsee, T., Nicholson, S. A. & Monteiro, P. M. S. Storm-driven pCO2 feedback weakens the response of air-sea CO2 fluxes in the Sub-Antarctic Southern Ocean. Geophys. Res. Lett. 51, e2023GL107804 (2024).

    Google Scholar 

  32. Turner, J. S. et al. Seasonal variability of surface ocean carbon uptake and chlorophyll-a concentration in the west Antarctic Peninsula over two decades. Geophys. Res. Lett. 52, e2024GL112446 (2025).

    Google Scholar 

  33. Carranza, M. M. et al. Extratropical storms induce carbon outgassing over the Southern Ocean. npj Clim. Atmos. Sci. 7, 106 (2024).

    Google Scholar 

  34. Gutiérrez-Loza, L., Nilsson, E., Wallin, M. B., Sahlée, E. & Rutgersson, A. On physical mechanisms enhancing air–sea CO2 exchange. Biogeosciences 19, 5645–5665 (2022).

    Google Scholar 

  35. Reichl, B. G. & Deike, L. Contribution of sea-state dependent bubbles to air-sea carbon dioxide fluxes. Geophys. Res. Lett. 47, e2020GL087267 (2020).

    Google Scholar 

  36. Richter, D. H. & Wainwright, C. E. Large-Eddy simulation of sea spray impacts on fluxes in the high-wind boundary layer. Geophys. Res. Lett. 50, e2022GL101862 (2023).

    Google Scholar 

  37. Peng T. & Richter D. Sea spray and its feedback effects: assessing bulk algorithms of air–sea heat fluxes via direct numerical simulations. https://doi.org/10.1175/JPO-D-18-0193.1 (2019).

  38. Andreas, E. L. Approximation formulas for the microphysical properties of saline droplets. Atmos. Res. 75, 323–345 (2005).

    Google Scholar 

  39. Papadimitriou, S. et al. The stoichiometric dissociation constants of carbonic acid in seawater brines from 298 to 267 K. Geochim. Cosmochim. Acta 220, 55–70 (2018).

    Google Scholar 

  40. Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).

    Google Scholar 

  41. Weiss, R. F., Jahnke, R. A. & Keeling, C. D. Seasonal effects of temperature and salinity on the partial pressure of CO2 in seawater. Nature 300, 511–513 (1982).

    Google Scholar 

  42. Edson J. B. et al. On the exchange of momentum over the open ocean https://doi.org/10.1175/JPO-D-12-0173.1 (2013).

  43. Hwang P. A. & Walsh E. J. Estimating maximum significant wave height and dominant wave period inside tropical cyclones. https://doi.org/10.1175/WAF-D-17-0186.1 (2018).

  44. Andreas E. L. Perspectives on Estimating the Spray-Mediated Flux of Gases across the Air-Sea Interface. 2014. (Accessed 3 November 2025). https://ams.confex.com/ams/94Annual/webprogram/Paper235844.html

  45. Monahan E. C., Spiel D. E. & Davidson K. L. A model of marine aerosol generation via whitecaps and wave disruption. in Oceanic Whitecaps: And Their Role in Air-Sea Exchange Processes (eds Monahan E. C. & Niocaill G. M.) 167–174 (Springer Netherlands, 1986).

  46. Nightingale, P. D., Liss, P. S. & Schlosser, P. Measurements of air-sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett. 27, 2117–2120 (2000).

    Google Scholar 

  47. McGillis, W. R., Edson, J. B., Hare, J. E. & Fairall, C. W. Direct covariance air-sea CO2 fluxes. J. Geophys. Res. Oceans 106, 16729–16745 (2001).

    Google Scholar 

  48. Ho D. T. et al. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys. Res. Lett. 33. https://doi.org/10.1029/2006GL026817 (2006).

Download references

Acknowledgements

This research was funded by the National Science Foundation, Award #2218781.

Author information

Authors and Affiliations

  1. Department of Marine Science, University of Connecticut, Groton, CT, USA

    Lucy Hendrickson, Leonel Romero & Penny Vlahos

Authors
  1. Lucy Hendrickson
    View author publications

    Search author on:PubMed Google Scholar

  2. Leonel Romero
    View author publications

    Search author on:PubMed Google Scholar

  3. Penny Vlahos
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.H. performed formal analysis, wrote the main manuscript text, prepared the figures, and developed and tested the model code. L.R. conceptualized the theoretical framework, provided wave data, and validated the model code. L.R. and P.V. contributed to manuscript review and editing. All authors read and approved the final draft.

Corresponding author

Correspondence to Lucy Hendrickson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrickson, L., Romero, L. & Vlahos, P. Sea spray driven CO2 efflux: modeling the effect of sea spray evaporation on carbonate chemistry and air-sea gas exchange. npj Clim Atmos Sci (2025). https://doi.org/10.1038/s41612-025-01304-5

Download citation

  • Received: 29 September 2025

  • Accepted: 17 December 2025

  • Published: 31 December 2025

  • DOI: https://doi.org/10.1038/s41612-025-01304-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Climate and Atmospheric Science (npj Clim Atmos Sci)

ISSN 2397-3722 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene