Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Climate and Atmospheric Science
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj climate and atmospheric science
  3. articles
  4. article
Strengthening of favorable environments for North Atlantic tropical cyclogenesis in midlatitudes in a warmer climate
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Strengthening of favorable environments for North Atlantic tropical cyclogenesis in midlatitudes in a warmer climate

  • A. Montoro-Mendoza1,2,
  • C. Calvo-Sancho3,
  • J. J. González-Alemán4,
  • J. Díaz-Fernández1,5,
  • P. Bolgiani5 &
  • …
  • M. L. Martín1,6 

npj Climate and Atmospheric Science , Article number:  (2026) Cite this article

  • 2220 Accesses

  • 3 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atmospheric science
  • Climate change

Abstract

Anthropogenic climate change is intensifying tropical cyclones, and some studies suggest that they are now impacting regions farther from the equator, though uncertainties remain. This study examines the North Atlantic (NATL) basin’s autumn climatology, focusing on environments conducive to tropical transitions (TTs), as most cyclones affecting Europe that originate from TTs occur during this season. Ten CMIP6 climate models under the historical, SSP2-4.5 and SSP5-8.5 scenarios are used, covering the 1981–2100 period, with the ERA5 reanalysis employed as a reference to support the results. The study introduces the Tropical Transition Favorability Index (TTFI), which is a novel metric that integrates key parameters to quantify environmental favorability for TTs in the NATL. Findings indicate a progressive tropicalization of the NATL basin under both SSP2-4.5 and SSP5-8.5, with a more pronounced effect under the latter, driven by increased sea surface temperatures and humidity, while dynamic constraints weaken. Although in some cases the magnitude of projected future changes is comparable to existing CMIP6 models biases with respect to ERA5, the results suggest a higher likelihood of TTs, increasing the risk from these destructive systems.

Similar content being viewed by others

Anthropogenic warming projected to drive a decline in global tropical cyclone frequency in CMIP6 simulations

Article Open access 20 January 2026

Future North Atlantic tropical cyclone intensities in modified historical environments

Article Open access 05 December 2025

Future extratropical cyclones with more moisture and fewer associated atmospheric rivers

Article Open access 09 January 2026

Data availability

The selected CMIP6 climate models data can be obtained from the Earth System Grid Federation (ESGF) dataset, which is available online at: https://aims2.llnl.gov/search. Observational data from the ERA5 reanalysis can be obtained from the Copernicus Climate Data Store, available online at: https://cds.climate.copernicus.eu/datasets. The code used for the calculation of the TTFI in the NATL basin covering from 1981 to 2100, based on several CMIP6 models and ERA5, and the composite of the TTFI for a set of observed TT events in the NATL for the period 1981 – 2010, based on ERA5, are available from the corresponding author upon reasonable request.

References

  1. Pielke, R. A. & Landsea, C. W. Normalized Hurricane Damages in the United States: 1925–95. Weather Forecast 13, 621–631 (1998).

    Google Scholar 

  2. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    Google Scholar 

  3. Peduzzi, P. et al. Global trends in tropical cyclone risk. Nat. Clim. Change 2, 289–294 (2012).

    Google Scholar 

  4. Haarsma, R. J. et al. More hurricanes to hit western Europe due to global warming. Geophys. Res. Lett. 40, 1783–1788 (2013).

    Google Scholar 

  5. Baker, A. J., Hodges, K. I., Schiemann, R. K. H. & Vidale, P. L. Historical variability and lifecycles of north atlantic midlatitude cyclones originating in the tropics. J. Geophys. Res. Atmos. 126, e2020JD033924 (2021).

    Google Scholar 

  6. González-Alemán, J. J., Valero, F., Martín-León, F. & Evans, J. L. Classification and Synoptic Analysis of Subtropical Cyclones within the Northeastern Atlantic Ocean. J. Clim. 28, 3331–3352 (2015).

    Google Scholar 

  7. McTaggart-Cowan, R., Galarneau, T. J., Bosart, L. F., Moore, R. W. & Martius, O. A Global Climatology of Baroclinically Influenced Tropical Cyclogenesis. Mon. Weather Rev. 141, 1963–1989 (2013).

    Google Scholar 

  8. Davis, C. A. & Bosart, L. F. Baroclinically Induced Tropical Cyclogenesis. Mon. Weather Rev. 131, 2730–2747 (2003).

    Google Scholar 

  9. Quitián-Hernández, L., Martín, M. L., González-Alemán, J. J., Santos-Muñoz, D. & Valero, F. Identification of a subtropical cyclone in the proximity of the Canary Islands and its analysis by numerical modeling. Atmos. Res. 178–179, 125–137 (2016).

    Google Scholar 

  10. Calvo-Sancho, C. et al. An environmental synoptic analysis of tropical transitions in the central and Eastern North Atlantic. Atmos. Res. 278, 106353 (2022).

    Google Scholar 

  11. Montoro-Mendoza, A. et al. Environments conductive to tropical transitions in the North Atlantic: Anthropogenic climate change influence study. Atmos. Res. 310, 107609 (2024).

    Google Scholar 

  12. Hulme, A. L. & Martin, J. E. Synoptic- and Frontal-Scale Influences on Tropical Transition Events in the Atlantic Basin. Part II: Tropical Transition of Hurricane Karen. Mon. Weather Rev. 137, 3626–3650 (2009).

    Google Scholar 

  13. Cammas, J.-P., Keyser, D., Lackmann, G. M., & Molinari, J. Diabatic redistribution of potential vorticity accompanying the development of an outflow jet within a strong extratropical cyclone. In Preprints, International Symposium on the Life Cycles of Extratropical Cyclones, Vol. II 403–409 (Geophysical Institute, University of Bergen, Bergen, Norway, 1994).

  14. Knutson, T. et al. Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bull. Am. Meteorol. Soc. 100, 1987–2007 (2019).

    Google Scholar 

  15. McTaggart-Cowan, R., Davies, E. L., Fairman, J. G., Galarneau, T. J. & Schultz, D. M. Revisiting the 26.5 °C Sea Surface Temperature Threshold for Tropical Cyclone Development. Bull. Am. Meteorol. Soc. 96, 1929–1943 (2015).

    Google Scholar 

  16. Kang, N.-Y. & Elsner, J. B. Trade-off between intensity and frequency of global tropical cyclones. Nat. Clim. Change 5, 661–664 (2015).

    Google Scholar 

  17. Pérez-Alarcón, A., Fernández-Alvarez, J. C., Sorí, R., Nieto, R. & Gimeno, L. The Combined Effects of SST and the North Atlantic Subtropical High-Pressure System on the Atlantic Basin Tropical Cyclone Interannual Variability. Atmosphere 12, 329 (2021).

    Google Scholar 

  18. Dare, R. A. & McBride, J. L. The Threshold Sea Surface Temperature Condition for Tropical Cyclogenesis. J. Clim. 24, 4570–4576 (2011).

    Google Scholar 

  19. Hendricks, E. A., Peng, M. S., Fu, B. & Li, T. Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Weather Rev. 138, 3243–3271 (2010).

    Google Scholar 

  20. Knutson, T. et al. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 101, E303–E322 (2020).

    Google Scholar 

  21. Aiyyer, A. R. & Thorncroft, C. Climatology of Vertical Wind Shear over the Tropical Atlantic. J. Clim. 19, 2969–2983 (2006).

    Google Scholar 

  22. Rios-Berrios, R. et al. A Review of the Interactions between Tropical Cyclones and Environmental Vertical Wind Shear. J. Atmos. Sci. 81, 713–741 (2024).

    Google Scholar 

  23. Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    Google Scholar 

  24. Duan, H., Chen, D. & Lie, J. The Impact of Global Warming on Hurricane Intensity. IOP Conf. Ser. Earth Environ. Sci. 199, 022045 (2018).

    Google Scholar 

  25. Walsh, K. J. E. et al. Tropical cyclones and climate change. Trop. Cyclone Res. Rev. 8, 240–250 (2019).

    Google Scholar 

  26. Murakami, H. et al. Detected climatic change in global distribution of tropical cyclones. Proc. Natl. Acad. Sci. 117, 10706–10714 (2020).

    Google Scholar 

  27. Wu, L., Zhao, H., Wang, C., Cao, J. & Liang, J. Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review. Adv. Atmos. Sci. 39, 205–221 (2022).

    Google Scholar 

  28. Studholme, J., Fedorov, A. V., Gulev, S. K., Emanuel, K. & Hodges, K. Poleward expansion of tropical cyclone latitudes in warming climates. Nat. Geosci. 15, 14–28 (2022).

    Google Scholar 

  29. Cao, X. et al. The southward shift of hurricane genesis over the northern Atlantic Ocean. Npj Clim. Atmos. Sci. 8, 37 (2025).

    Google Scholar 

  30. Holland, G. & Bruyère, C. L. Recent intense hurricane response to global climate change. Clim. Dyn. 42, 617–627 (2014).

    Google Scholar 

  31. Vecchi, G. A. & Knutson, T. R. On Estimates of Historical North Atlantic Tropical Cyclone Activity*. J. Clim. 21, 3580–3600 (2008).

    Google Scholar 

  32. Vecchi, G. A. & Knutson, T. R. Estimating Annual Numbers of Atlantic Hurricanes Missing from the HURDAT Database (1878–1965) Using Ship Track Density. J. Clim. 24, 1736–1746 (2011).

    Google Scholar 

  33. Guishard, M. P., Evans, J. L. & Hart, R. E. Atlantic Subtropical Storms. Part II: Climatology. J. Clim. 22, 3574–3594 (2009).

    Google Scholar 

  34. Ribberink, M., De Vries, H., Bloemendaal, N., Baatsen, M. & Van Meijgaard, E. Tropical cyclone intensification and extratropical transition under alternate climate conditions: a case study of Hurricane Ophelia (2017). Preprint at https://doi.org/10.5194/egusphere-2025-218 (2025).

  35. Fox-Kemper, B. Ocean, Cryosphere and Sea Level Change. In vol. 2021. U13B-09 (2021).

  36. Pörtner, H. O. et al. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2022).

  37. Bentley, A. M., Bosart, L. F. & Keyser, D. Upper-Tropospheric Precursors to the Formation of Subtropical Cyclones that Undergo Tropical Transition in the North Atlantic Basin. Mon. Weather Rev. 145, 503–520 (2017).

    Google Scholar 

  38. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  39. Tebaldi, C. & O’Neill, B. C. Climate scenarios and their relevance and implications for impact studies. In Climate Extremes and Their Implications for Impact and Risk Assessment 11–29 (Elsevier, https://doi.org/10.1016/B978-0-12-814895-2.00002-1 2020).

  40. Camargo, S. J. et al. Tropical Cyclones and Associated Environmental Fields in CMIP6 Models. J. Clim. 38, 3877–3902 (2025).

    Google Scholar 

  41. Garcia-Soto, C. et al. An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 8, 642372 (2021).

    Google Scholar 

  42. Gray, W. M. Global view of the origin of tropical disturbances and stoRMS. Mon. Weather Rev. 96, 669–700 (1968).

    Google Scholar 

  43. DeMaria, M., Knaff, J. A. & Connell, B. H. A Tropical Cyclone Genesis Parameter for the Tropical Atlantic. Weather Forecast 16, 219–233 (2001).

    Google Scholar 

  44. Zhao, H. et al. Decreasing global tropical cyclone frequency in CMIP6 historical simulations. Sci. Adv. 10, eadl2142 (2024).

    Google Scholar 

  45. Riehl, H. Tropical Meteorology. vol. 392 (McGraw-Hill, 1954).

  46. Michaelis, A. C. & Lackmann, G. M. Climatological Changes in the Extratropical Transition of Tropical Cyclones in High-Resolution Global Simulations. J. Clim. 32, 8733–8753 (2019).

    Google Scholar 

  47. Vecchi, G. A. & Soden, B. J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34, 2006GL028905 (2007).

    Google Scholar 

  48. Camargo, S. J., Emanuel, K. A. & Sobel, A. H. Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. J. Clim. 20, 4819–4834 (2007).

    Google Scholar 

  49. Carlson, T. N. Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Weather Rev. 97, 716–726 (1969).

    Google Scholar 

  50. Cresswell-Clay, N. et al. Twentieth-century Azores High expansion was unprecedented in the past 1,200 years. Nat. Geosci. 15, 548–553 (2022).

    Google Scholar 

  51. Galarneau, T. J., McTaggart-Cowan, R., Bosart, L. F. & Davis, C. A. Development of North Atlantic Tropical Disturbances near Upper-Level Potential Vorticity Streamers. J. Atmos. Sci. 72, 572–597 (2015).

    Google Scholar 

  52. Shearman, R. K. & Lentz, S. J. Long-Term Sea Surface Temperature Variability along the U.S. East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).

    Google Scholar 

  53. Meiler, S., Ciullo, A., Kropf, C. M., Emanuel, K. & Bresch, D. N. Uncertainties and sensitivities in the quantification of future tropical cyclone risk. Commun. Earth Environ. 4, 371 (2023).

    Google Scholar 

  54. Ritchie, E. A. & Elsberry, R. L. Simulations of the Extratropical Transition of Tropical Cyclones: Phasing between the Upper-Level Trough and Tropical Cyclones. Mon. Weather Rev. 135, 862–876 (2007).

    Google Scholar 

  55. Evans, C. et al. The Extratropical Transition of Tropical Cyclones. Part I: Cyclone Evolution and Direct Impacts. Mon. Weather Rev. 145, 4317–4344 (2017).

    Google Scholar 

  56. Keller, J. H. et al. The Extratropical Transition of Tropical Cyclones. Part II: Interaction with the Midlatitude Flow, Downstream Impacts, and Implications for Predictability. Mon. Weather Rev. 147, 1077–1106 (2019).

    Google Scholar 

  57. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  58. Guan, J., Yao, J., Li, M., Li, D. & Zheng, J. Historical changes and projected trends of extreme climate events in Xinjiang, China. Clim. Dyn. 59, 1753–1774 (2022).

    Google Scholar 

  59. Yaddanapudi, R., Mishra, A., Huang, W. & Chowdhary, H. Compound Wind and Precipitation Extremes in Global Coastal Regions Under Climate Change. Geophys. Res. Lett. 49, e2022GL098974 (2022).

    Google Scholar 

  60. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  61. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Google Scholar 

  62. May, R. M. et al. MetPy: A Meteorological Python Library for Data Analysis and Visualization. Bull. Am. Meteorol. Soc. 103, E2273–E2284 (2022).

    Google Scholar 

  63. Thorncroft, C. & Hodges, K. African Easterly Wave Variability and Its Relationship to Atlantic Tropical Cyclone Activity. J. Clim. 14, 1166–1179 (2001).

    Google Scholar 

  64. Roberts, M. J. et al. Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophys. Res. Lett. 47, e2020GL088662 (2020).

    Google Scholar 

  65. Sainsbury, E. M. et al. Can low-resolution CMIP6 ScenarioMIP models provide insight into future European post-tropical-cyclone risk? Weather Clim. Dyn. 3, 1359–1379 (2022).

    Google Scholar 

  66. Alves, J. M. R., Miranda, P. M. A., Tomé, R. & Caldeira, R. Evolution of the subtropical surface wind in the north-east Atlantic under climate change. Clim. Dyn. 63, 3 (2025).

    Google Scholar 

  67. Boucher, O. et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).

    Google Scholar 

  68. Volodin, E. et al. INM INM-CM4-8 model output prepared for CMIP6 CMIP piControl. Earth System Grid Federation https://doi.org/10.22033/ESGF/CMIP6.5080 (2019).

  69. Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).

    Google Scholar 

  70. Roberts, M. J. et al. Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev. 12, 4999–5028 (2019).

    Google Scholar 

  71. Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Google Scholar 

  72. Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).

    Google Scholar 

  73. Danabasoglu, G. NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. Earth System Grid Federation https://doi.org/10.22033/ESGF/CMIP6.10071 (2019).

  74. Yukimoto, S. et al. MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation https://doi.org/10.22033/ESGF/CMIP6.621 (2019).

  75. Seland, Ø et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).

    Google Scholar 

  76. Kelley, M. et al. GISS-E2.1: Configurations and Climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the research project PID2023-146344OB-I00 (CONSCIENCE) financed by MICIU/AEI /10.13039/501100011033 and by FEDER, UE. This work is supported by the Interdisciplinary Mathematics Institute of the Complutense University of Madrid. This work is also supported by the ECMWF Special Projects SPESMART and SPESVALE. C. Calvo-Sancho acknowledges the grant awarded by the Spanish Ministry of Science and Innovation - FPI program (PRE2020-092343). C. Calvo-Sancho acknowledges support from the GVA. PROMETEO Grant CIPROM/2023/38 and CSIC-LINCGLOBAL Ref. LINCG24042.

Author information

Authors and Affiliations

  1. Department of Applied Mathematics. Faculty of Computer Engineering, Universidad de Valladolid, Valladolid, Spain

    A. Montoro-Mendoza, J. Díaz-Fernández & M. L. Martín

  2. Consejo Superior de Investigaciones Científicas (CSIC). Instituto de Geociencias (IGEO), Madrid, Spain

    A. Montoro-Mendoza

  3. Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Científicas (CIDE, CSIC-UV-GVA), Climate, Atmosphere and Ocean Laboratory (Climatoc-Lab), Moncada, Valencia, Spain

    C. Calvo-Sancho

  4. Agencia Estatal de Meteorología (AEMET). Department of Development and Applications, Madrid, Spain

    J. J. González-Alemán

  5. Department of Earth Physics and Astrophysics. Faculty of Physics, Universidad Complutense de Madrid, Madrid, Spain

    J. Díaz-Fernández & P. Bolgiani

  6. Interdisciplinary Mathematics Institute. Universidad Complutense de Madrid, Madrid, Spain

    M. L. Martín

Authors
  1. A. Montoro-Mendoza
    View author publications

    Search author on:PubMed Google Scholar

  2. C. Calvo-Sancho
    View author publications

    Search author on:PubMed Google Scholar

  3. J. J. González-Alemán
    View author publications

    Search author on:PubMed Google Scholar

  4. J. Díaz-Fernández
    View author publications

    Search author on:PubMed Google Scholar

  5. P. Bolgiani
    View author publications

    Search author on:PubMed Google Scholar

  6. M. L. Martín
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.M.M. conducted the research, performed the analysis and drafted the article. C.C.S. contributed to the interpretation of the results and reviewed the article. J.J.G.A. contributed to the research and interpretation of the results and reviewed the article. J.D.F. reviewed the article. P.B. reviewed the article and contributed to the research. M.L.M. contributed to the research, supervised the work, reviewed the article, and contributed to the interpretation of the results. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to A. Montoro-Mendoza.

Ethics declarations

Competing interests

The authors declare no competing interests. The funding sponsors had no participation in the execution of the experiment, the decision to publish the results, or the writing of the manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoro-Mendoza, A., Calvo-Sancho, C., González-Alemán, J.J. et al. Strengthening of favorable environments for North Atlantic tropical cyclogenesis in midlatitudes in a warmer climate. npj Clim Atmos Sci (2026). https://doi.org/10.1038/s41612-025-01317-0

Download citation

  • Received: 15 May 2025

  • Accepted: 29 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41612-025-01317-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Climate and Atmospheric Science (npj Clim Atmos Sci)

ISSN 2397-3722 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing