Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Climate and Atmospheric Science
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj climate and atmospheric science
  3. articles
  4. article
Precession-driven salinity feedback in the western Pacific warm pool: insights from alkenone hydrogen isotopes over the past 450 kyr
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Precession-driven salinity feedback in the western Pacific warm pool: insights from alkenone hydrogen isotopes over the past 450 kyr

  • Run Yuan1,2,
  • Rui Zhang1,2,3,4,
  • Li Jiang1,2,
  • Tiegang Li5,6,7,
  • James Russell3,
  • Fan Zhang8,
  • Minglei Guan9,
  • Xiaoxiao Yu10,
  • Yuhang Wan1,2,
  • Zhiyong Liu11 &
  • …
  • Shiyang Xu1,2 

npj Climate and Atmospheric Science , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Hydrology
  • Ocean sciences

Abstract

The Western Pacific Warm Pool (WPWP) acts as Earth’s largest tropical heat reservoir; however, the mechanisms that drive orbital-scale sea surface salinity (SSS) variability remain unresolved, as traditional δ¹⁸O-based proxies conflate regional salinity with global ice-volume effects. Here, we present a 450 kyr SSS record from the WPWP using hydrogen isotope composition of alkenones (δDAlk)—a proxy isolating evaporation-precipitation balance—paired with isotope-enabled climate modeling. Our results reveal dominant precessional SSS variability, with maxima during boreal precession minima (Pmin) when intensified meridional insolation gradients strengthen Walker Circulation, enhance evaporation, and sustain La Niña-like conditions. The δDAlk record demonstrates that precession-driven ocean-atmosphere feedbacks govern 78% of SSS variability, and reconcile discrepancies in previous δ¹⁸O-based studies showing the significant influence of obliquity. Integration with climate simulations shows that precession-induced trade winds amplify saline water advection and evaporation, establishing a “salinification triad” that dominates WPWP hydroclimate. These findings redefine the WPWP as a precession-paced engine of tropical hydrology, suggesting that the low-latitude tropical hydrology is highly sensitive to insolation intensity and then regulates ENSO-monsoon interactions. By isolating orbital controls on salinity extremes, this work advances frameworks for projecting hydrological responses to anthropogenic warming, critical for regions reliant on monsoon rainfall, emphasizing the vulnerability of tropical hydrological extremes to orbital forcing.

Similar content being viewed by others

Warm pool ocean heat content regulates ocean–continent moisture transport

Article 19 October 2022

Quaternary deep-thermocline cooling enhanced by southern Pacific Ocean tunnelling

Article Open access 17 October 2025

Precession cycles of the El Niño/Southern oscillation-like system controlled by Pacific upper-ocean stratification

Article Open access 22 November 2021

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information.

References

  1. Windler, G., Tierney, J. E., DiNezio, P. N., Gibson, K. & Thunell, R. Shelf exposure influence on Indo-Pacific Warm Pool climate for the last 450,000 years. Earth Planet. Sci. Lett. 516, 66–76 (2019).

    Google Scholar 

  2. Windler, G., Tierney, J. E., Zhu, J. & Poulsen, C. J. Unraveling glacial hydroclimate in the Indo-Pacific Warm Pool: perspectives from water isotopes. Paleoceanogr. Paleoclimatol. 35, e2020PA003985 (2020).

    Google Scholar 

  3. Jian, Z. et al. Warm pool ocean heat content regulates ocean–continent moisture transport. Nature 612, 92–99 (2022).

    Google Scholar 

  4. Zhang, S. et al. Precession cycles of the El Niño/Southern oscillation-like system controlled by Pacific upper-ocean stratification. Commun. Earth Environ. 2, 239 (2021).

    Google Scholar 

  5. Zhang, S. et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years. Nat. Commun. 13, 5457 (2022).

    Google Scholar 

  6. Dang, H. et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene. Sci. Adv. 6, eabc0402 (2020).

    Google Scholar 

  7. Huang, E. et al. Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka. Sci. Adv. 6, eaba4823 (2020).

    Google Scholar 

  8. Geng, X., Kug, J.-S., Shin, N.-Y., Zhang, W. & Chen, H.-C. On the spatial double peak of the 2023–2024 El Niño event. Commun. Earth Environ. 5, 691 (2024).

    Google Scholar 

  9. Chen, Z. et al. Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett. 47, e2019GL086902 (2020).

    Google Scholar 

  10. Clemens, S. C. et al. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: A test for future predictions. Sci. Adv. 7, eabg3848 (2021).

    Google Scholar 

  11. Ha, K. J., Moon, S., Timmermann, A. & Kim, D. Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys. Res. Lett. 47, e2020GL087492 (2020).

    Google Scholar 

  12. McGrath, S. M., Clemens, S. C. & Huang, Y. Pleistocene Sunda Shelf submersion-exposure cycles initiate vegetation Walker Circulation feedback. Geology 51, 1053–1056 (2023).

    Google Scholar 

  13. Hollstein, M. et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: Forcing mechanisms and implications for the glacial Walker circulation. Quat. Sci. Rev. 201, 429–445 (2018).

    Google Scholar 

  14. Lo, L. et al. Orbital control on the thermocline structure during the past 568 kyr in the Solomon Sea, southwest equatorial Pacific. Quat. Sci. Rev. 295, 107756 (2022).

    Google Scholar 

  15. Tachikawa, K. et al. The precession phase of hydrological variability in the Western Pacific Warm Pool during the past 400 ka. Quat. Sci. Rev. 30, 3716–3727 (2011).

    Google Scholar 

  16. Jian, Z. et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics. Proc. Natl. Acad. Sci. 117, 7044–7051 (2020).

    Google Scholar 

  17. Koutavas, A., & Joanides S. El Niño–Southern oscillation extrema in the Holocene and last glacial maximum. Paleoceanography 27, (2012).

  18. Liu, Y. et al. Obliquity pacing of the western Pacific Intertropical Convergence Zone over the past 282,000 years. Nat. Commun. 6, 10018 (2015).

    Google Scholar 

  19. Jia, Q. et al. Hydrological variability in the western tropical Pacific over the past 700 kyr and its linkage to Northern Hemisphere climatic change. Palaeogeogr., Palaeoclimatol., Palaeoecol. 493, 44–54 (2018).

    Google Scholar 

  20. Lambert, J. E. et al. Obliquity-driven subtropical forcing of the thermocline after 240 ka in the southern sector of the Western Pacific Warm Pool. Palaeogeogr. Palaeoclimatol., Palaeoecol. 621, 111578 (2023).

    Google Scholar 

  21. Delcroix, T., Henin, C., Porte, V. & Arkin, P. Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep-Sea Res. Part I Oceanogr. Res. Pap. 43, 1123–1141 (1996).

    Google Scholar 

  22. Schouten, S. et al. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences 3, 113–119 (2006).

    Google Scholar 

  23. Sachs, J. P., Maloney, A. E., Gregersen, J. & Paschall, C. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi. Geochim. Cosmochim. Acta 189, 96–109 (2016).

    Google Scholar 

  24. Schwab, V. F. & Sachs, J. P. The measurement of D/H ratio in alkenones and their isotopic heterogeneity. Org. Geochem. 40, 111–118 (2009).

    Google Scholar 

  25. Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).

    Google Scholar 

  26. M’boule, D. et al. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae. Geochim. Cosmochim. Acta 130, 126–135 (2014).

    Google Scholar 

  27. Gould, J., Kienast, M., Dowd, M. & Schefuß, E. An open-ocean assessment of alkenone δD as a paleo-salinity proxy. Geochim. Cosmochim. Acta 246, 478–497 (2019).

    Google Scholar 

  28. Wolfshorndl, M., Danford, R. & Sachs, J. P. 2H/1H fractionation in microalgal lipids from the North Pacific Ocean: Growth rate and irradiance effects. Geochim. Cosmochim. Acta 246, 317–338 (2019).

    Google Scholar 

  29. Mitsunaga, B. A. et al. Alkenone δ2H values–a viable seawater isotope proxy? New core-top δ2HC37: 3 and δ2HC37: 2 data suggest inter-alkenone and alkenone-water hydrogen isotope fractionation are independent of temperature and salinity. Geochim. Cosmochim. Acta 339, 139–156 (2022).

    Google Scholar 

  30. van der Meer, M. T. et al. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi. Geochim. Cosmochim. Acta 160, 16–24 (2015).

    Google Scholar 

  31. Weiss, G. M., Schouten, S., Damsté, J. S. S. & van der Meer, M. T. Constraining the application of hydrogen isotopic composition of alkenones as a salinity proxy using marine surface sediments. Geochim. Cosmochim. Acta 250, 34–48 (2019).

    Google Scholar 

  32. Torres-Romero, I. et al. Hydrogen isotope fractionation is controlled by CO2 in coccolithophore lipids. Proc. Natl. Acad. Sci. 121, e2318570121 (2024).

    Google Scholar 

  33. Petrick, B. F., McClymont, E. L., Marret, F. & Van Der Meer, M. T. Changing surface water conditions for the last 500 ka in the Southeast Atlantic: Implications for variable influences of Agulhas leakage and Benguela upwelling. Paleoceanography 30, 1153–1167 (2015).

    Google Scholar 

  34. Simon, M. H. et al. Salt exchange in the Indian-Atlantic Ocean Gateway since the Last Glacial Maximum: A compensating effect between Agulhas Current changes and salinity variations?. Paleoceanography 30, 1318–1327 (2015).

    Google Scholar 

  35. Quirós-Collazos, L. et al. Controls on primary productivity in the Eastern Equatorial Pacific, east of the Galapagos Islands, during the penultimate deglaciation. Paleoceanogr. Paleoclimatol. 35, e2019PA003777 (2020).

    Google Scholar 

  36. Zhang, R. et al. High-resolution records of sea surface temperature and salinity in the East China Sea over the past 14.2 kyr: Implication from alkenone and its hydrogen isotopes. Glob. Planet. Change 224, 104099 (2023).

    Google Scholar 

  37. Brassell, S., Eglinton, G., Marlowe, I., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129–133 (1986).

    Google Scholar 

  38. Tierney, J. E. & Tingley, M. P. BAYSPLINE: A new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Google Scholar 

  39. Mohtadi, M. et al. North Atlantic forcing of tropical Indian Ocean climate. Nature 509, 76–80 (2014).

    Google Scholar 

  40. Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. nature 534, 640–646 (2016).

    Google Scholar 

  41. Wang, P. X. et al. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci. Rev. 174, 84–121 (2017).

    Google Scholar 

  42. Liu, T. et al. ENSO-like state in the tropical Pacific Ocean during the cold and warm periods of the galcial cycle since 450 ka. Quat. Sci. 40, 646–657 (2020).

    Google Scholar 

  43. Cheng, H. et al. Milankovitch theory and monsoon. Innovation 3, (2022).

  44. Sha, L. et al. Triple oxygen isotope reveals insolation-forced tropical moisture cycles. Sci. Adv. 10, eadp7855 (2024).

    Google Scholar 

  45. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Google Scholar 

  46. Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science 360, 877–881 (2018).

    Google Scholar 

  47. Guan, C. et al. Dipole structure of mixed layer salinity in response to El Niño-La Niña asymmetry in the tropical Pacific. Geophys. Res. Lett. 46, 12165–12172 (2019).

    Google Scholar 

  48. Zhou, X., Jin, X., Shi, X. & Liu, C. The change in convection over the Indo-Pacific warm pool in the mid-Holocene and its influence on South Asian precipitation. Quat. Sci. Rev. 322, 108399 (2023).

    Google Scholar 

  49. Rustic, G. T., Polissar, P. J., Ravelo, A. C. & White, S. M. Modulation of late Pleistocene ENSO strength by the tropical Pacific thermocline. Nat. Commun. 11, 5377 (2020).

    Google Scholar 

  50. Shi, Z., Cai, Y., Liu, X. & Sha, Y. Distinct responses of East Asian and Indian summer monsoons to astronomical insolation during Marine Isotope Stages 5c and 5e. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 40–48 (2018).

    Google Scholar 

  51. Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).

    Google Scholar 

  52. Yu, L. Connecting subtropical salinity maxima to tropical salinity minima: Synchronization between ocean dynamics and the water cycle. Prog. Oceanogr. 219, 103172 (2023).

    Google Scholar 

  53. Huybers, P. Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature 480, 229–232 (2011).

    Google Scholar 

  54. Lu, Z., Liu, Z., Chen, G. & Guan, J. Prominent precession band variance in ENSO intensity over the last 300,000 years. Geophys. Res. Lett. 46, 9786–9795 (2019).

    Google Scholar 

  55. Yu, Z. et al. Late Pleistocene island weathering and precipitation in the Western Pacific Warm Pool. NPJ Clim. Atmos. Sci. 7, 91 (2024).

    Google Scholar 

  56. Wei, H. H. & Bordoni, S. Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst. 10, 1708–1725 (2018).

    Google Scholar 

  57. Qu, T. & Gao, S. Resurfacing of South Pacific tropical water in the Equatorial Pacific and its variability associated with ENSO. J. Phys. Oceanogr. 47, 1095–1106 (2017).

    Google Scholar 

  58. Zhang, P., Wang, B., Wu, Z., Jin, R. & Cao, C. Intensified gradient La Niña and extra-tropical thermal patterns drive the 2022 East and South Asian “Seesaw” extremes. NPJ Clim. Atmos. Sci. 7, 47 (2024).

    Google Scholar 

  59. Rosenthal, Y., Holbourn, A. E. & Kulhanek, D. K. Expedition 363 preliminary report: Western Pacific warm pool. Int. Ocean Discov. Program. 363, 51–52 (2017).

    Google Scholar 

  60. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–6 (2005).

    Google Scholar 

  61. Chivall, D. et al. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae. Geochim. Cosmochim. Acta 140, 381–390 (2014).

    Google Scholar 

  62. Bintanja, R., Van De Wal, R. S. & Oerlemans, J. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437, 125–128 (2005).

    Google Scholar 

  63. Thirumalai, K., Quinn, T. M. & Marino, G. Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry. Paleoceanography 31, 1409–1422 (2016).

    Google Scholar 

  64. Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).

    Google Scholar 

  65. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos. Trans. Agu. 77, 379 (1996).

    Google Scholar 

  66. Li, M., Hinnov, L. & Kump, L. Acycle: Time-series analysis software for paleoclimate research and education. Comput. Geosci. 127, 12–22 (2019).

    Google Scholar 

  67. Nusbaumer, J., Wong, T. E., Bardeen, C. & Noone, D. Evaluating hydrological processes in the C ommunity A tmosphere M odel V ersion 5 (CAM5) using stable isotope ratios of water. J. Adv. Model. Earth Syst. 9, 949–977 (2017).

    Google Scholar 

  68. He, C. et al. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Sci. Adv. 7, eabe2611 (2021).

    Google Scholar 

  69. Du, X. et al. North Atlantic cooling triggered a zonal mode over the Indian Ocean during Heinrich Stadial 1. Sci. Adv. 9, eadd4909 (2023).

    Google Scholar 

  70. Macarewich, S. I., Poulsen, C. J. & Montañez, I. P. Simulation of oxygen isotopes and circulation in a late Carboniferous epicontinental sea with implications for proxy records. Earth Planet. Sci. Lett. 559, 116770 (2021).

    Google Scholar 

  71. Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  72. Tabor, C. R. et al. Interpreting precession-driven δ18O variability in the South Asian monsoon region. J. Geophys. Res.: Atmos. 123, 5927–5946 (2018).

    Google Scholar 

Download references

Acknowledgements

We appreciate Professor Lei Zhou, Professor Hongrui Zhang, and other anonymous reviewers for their helpful comments and suggestions, and also acknowledge Professor Steven C. Clemens for constructive comments on the manuscript. This work was financed by the National Natural Science Foundation of China (42176059, U1906211, 91958108, 41830539), International Postdoctoral Exchange Fellowship Program (20160073), Natural Science Foundation of Jiangsu Province (BK20170451, BE2016701), “521” talent peaks project in Lianyungang City (LYG06521202316), Project of Innovation for Undergraduate in Jiangsu Province (SD201911641107001, SZ201911641107002). We are also grateful to the “Qing Lan Project” of the Jiangsu Provincial Department of Education.

Author information

Authors and Affiliations

  1. Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China

    Run Yuan, Rui Zhang, Li Jiang, Yuhang Wan & Shiyang Xu

  2. School of Geomatics and Marine Information, Jiangsu Ocean University, Lianyungang, Jiangsu, China

    Run Yuan, Rui Zhang, Li Jiang, Yuhang Wan & Shiyang Xu

  3. Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA

    Rui Zhang & James Russell

  4. Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China

    Rui Zhang

  5. First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China

    Tiegang Li

  6. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

    Tiegang Li

  7. University of Chinese Academy of Sciences, Beijing, China

    Tiegang Li

  8. Department of Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, China

    Fan Zhang

  9. College of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen, China

    Minglei Guan

  10. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China

    Xiaoxiao Yu

  11. School of Radiation Medicine and Protection, Medicine College, Soochow University, Suzhou, Jiangsu, China

    Zhiyong Liu

Authors
  1. Run Yuan
    View author publications

    Search author on:PubMed Google Scholar

  2. Rui Zhang
    View author publications

    Search author on:PubMed Google Scholar

  3. Li Jiang
    View author publications

    Search author on:PubMed Google Scholar

  4. Tiegang Li
    View author publications

    Search author on:PubMed Google Scholar

  5. James Russell
    View author publications

    Search author on:PubMed Google Scholar

  6. Fan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  7. Minglei Guan
    View author publications

    Search author on:PubMed Google Scholar

  8. Xiaoxiao Yu
    View author publications

    Search author on:PubMed Google Scholar

  9. Yuhang Wan
    View author publications

    Search author on:PubMed Google Scholar

  10. Zhiyong Liu
    View author publications

    Search author on:PubMed Google Scholar

  11. Shiyang Xu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.Y., R.Z., and T.L. conceived and designed the study. R.Y., L.J., R.Z., J.R., F.Z., M.G., X.Y., Y.W., Z.L., and S.X. performed the investigation and data analysis. R.Y., L.J., R.Z., T.L., and J.R. contributed to the interpretation of the data. R.Y., L.J., and R.Z. performed the modelling simulation. R.Y., L.J., R.Z., and T.L. wrote and revised the manuscript.

Corresponding authors

Correspondence to Rui Zhang or Tiegang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Data S1-data-R2

Data S2-sites station

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R., Zhang, R., Jiang, L. et al. Precession-driven salinity feedback in the western Pacific warm pool: insights from alkenone hydrogen isotopes over the past 450 kyr. npj Clim Atmos Sci (2026). https://doi.org/10.1038/s41612-026-01335-6

Download citation

  • Received: 21 September 2025

  • Accepted: 19 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s41612-026-01335-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Climate and Atmospheric Science (npj Clim Atmos Sci)

ISSN 2397-3722 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene