Table 2 Overview of model architectures, training data, and metrics results from selected papers

From: A review of deep learning for brain tumor analysis in MRI

Rerence

Model architecture name

Training data used

Test set results (Dice)

Myronenko et al.34

Asymmetrical U-Net

BraTS 2018

WT: 88.39, TC: 81.54, ET: 76.64

Jiang et al.35

Two-Stage Cascaded U-Net

BraTS 2019

WT: 88.80, TC: 83.70, ET: 83.27

Isensee et al.33

nnU-Net (no new-Net)

BraTS 2020

WT: 88.95, TC: 85.06, ET: 82.03

Luu and Park36

modified nnU-Net

BraTS 2021

WT: 92.75, TC: 87.81, ET: 84.51

Zeineldin et al.14

Ensemble: DeepSeg, nnU-Net, and DeepSCAN

BraTS 2022

WT: 92.94, TC: 87.88, ET: 88.03

  1. WT whole tumor, TC tumor core, ET enhancing tumor.