Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj 2D Materials and Applications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj 2d materials and applications
  3. articles
  4. article
Unconventional bright ground-state excitons in monolayer TiI2 from first-principles calculations
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Unconventional bright ground-state excitons in monolayer TiI2 from first-principles calculations

  • Franz Fischer1,2,
  • Carl Emil Mørch Nielsen1,
  • Marta Prada1,3 &
  • …
  • Gabriel Bester1,4 

npj 2D Materials and Applications , Article number:  (2026) Cite this article

  • 1555 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Two-dimensional materials

Abstract

Based on ab initio screened configuration interaction calculations we find that TiI2 has a bright exciton ground state and identify two key mechanisms that lead to this unprecedented feature among transition metal dichalcogenides. First, the spin-orbit induced conduction band splitting results in optically allowed spin-alignment for electrons and holes across a significant portion of the Brillouin zone around the K-valley, avoiding band crossings seen in materials like monolayer MoSe2. Second, a sufficiently weak exchange interaction ensures that the bright exciton remains energetically below the dark exciton state. We further show that the bright exciton ground state is stable under various mechanical strains and that trion states (charged excitons) inherit this bright ground state. Our findings are expected to spark further investigation into related materials that bring along the two key features mentioned, as bright ground-state excitons are crucial for applications requiring fast radiative recombination.

Similar content being viewed by others

Designable exciton mixing through layer alignment in WS2-graphene heterostructures

Article Open access 31 July 2024

Biexcitons fine structure and non-equilibrium effects in transition metal dichalcogenides monolayers from first principles

Article Open access 06 April 2021

Upconversion photoluminescence excitation reveals exciton–trion and exciton–biexciton coupling in hBN/WS\(_{2}\)/hBN van der Waals heterostructures

Article Open access 11 August 2022

Data availability

The data used and analyzed during the current study is available from the corresponding author upon reasonable request. The underlying code for this study is not publicly available but may be made available upon reasonable request from the corresponding author.

Code availability

The underlying code for this study is not publicly available but may be made available upon reasonable request from the corresponding author.

References

  1. Frenkel, J. On the Transformation of light into Heat in Solids. I. Phys. Rev. 37, 17–44 (1931).

    Google Scholar 

  2. Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937).

    Google Scholar 

  3. Gu, J., Chakraborty, B., Khatoniar, M. & Menon, V. M. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol. 14, 1024–1028 (2019).

    Google Scholar 

  4. Wen, W., Wu, L. & Yu, T. Excitonic lasers in atomically thin 2D semiconductors. ACS Mater. Lett. 2, 1328–1342 (2020).

    Google Scholar 

  5. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon 10, 216–226 (2016).

    Google Scholar 

  6. Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl 2, 29 (2018).

    Google Scholar 

  7. Fang, H. H. et al. Control of the exciton radiative lifetime in van der Waals heterostructures. Phys. Rev. Lett. 123, 067401 (2019).

    Google Scholar 

  8. Mondal, N., Azam, N., Gartstein, Y. N., Mahjouri-Samani, M. & Malko, A. V. Photoexcitation dynamics and long-lived excitons in strain-engineered transition metal dichalcogenides. Adv. Mater. 34, 2110568 (2022).

    Google Scholar 

  9. Chen, H.-Y., Jhalani, V. A., Palummo, M. & Bernardi, M. Ab initio calculations of exciton radiative lifetimes in bulk crystals, nanostructures, and molecules. Phys. Rev. B 100, 075135 (2019).

    Google Scholar 

  10. Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794–2800 (2015).

    Google Scholar 

  11. Bester, G., Nair, S. & Zunger, A. Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1-xGaxAs/GaAs quantum dots. Phys. Rev. B 67, 161306 (2003).

    Google Scholar 

  12. Deilmann, T. & Thygesen, K. S. Dark excitations in monolayer transition metal dichalcogenides. Phys. Rev. B 96, 201113 (2017).

    Google Scholar 

  13. Deilmann, T. & Thygesen, K. S. Finite-momentum exciton landscape in mono- and bilayer transition metal dichalcogenides. 2D Mater. 6, 035003 (2019).

    Google Scholar 

  14. Malic, E. et al. Dark excitons in transition metal dichalcogenides. Phys. Rev. Mater. 2, 014002 (2018).

    Google Scholar 

  15. Torche, A. & Bester, G. First-principles many-body theory for charged and neutral excitations: trion fine structure splitting in transition metal dichalcogenides. Phys. Rev. B 100, 201403 (2019).

    Google Scholar 

  16. Robert, C. et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 11, 4037 (2020).

    Google Scholar 

  17. Echeverry, J. P., Urbaszek, B., Amand, T., Marie, X. & Gerber, I. C. Splitting between bright and dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 121107 (2016).

    Google Scholar 

  18. Fu, H., Wang, L.-W. & Zunger, A. Excitonic exchange splitting in bulk semiconductors. Phys. Rev. B 59, 5568–5574 (1999).

    Google Scholar 

  19. Fadaly, E. M. T. et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020).

    Google Scholar 

  20. Yuan, L.-D., Li, S.-S. & Luo, J.-W. Direct bandgap emission from strain-doped germanium. Nat. Commun. 15, 618 (2024).

    Google Scholar 

  21. Molas, M. R. et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater. 4, 021003 (2017).

    Google Scholar 

  22. Ren, L. et al. Control of the bright-dark exciton splitting using the Lamb shift in a two-dimensional semiconductor. Phys. Rev. Lett. 131, 116901 (2023).

    Google Scholar 

  23. Chowdhury, T. et al. Brightening of dark excitons in WS2 via tensile strain-induced excitonic valley convergence. Phys. Rev. B 110, L081405 (2024).

    Google Scholar 

  24. Zinkiewicz, M. et al. Neutral and charged dark excitons in monolayer WS2. Nanoscale 12, 18153–18159 (2020).

    Google Scholar 

  25. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Google Scholar 

  26. Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).

    Google Scholar 

  27. Swift, M. W., Sercel, P. C., Efros, A. L., Lyons, J. L. & Norris, D. J. Identification of semiconductor nanocrystals with bright ground-state excitons. ACS Nano 18, 19561–19567 (2024).

    Google Scholar 

  28. Li, X., Zhang, Z. & Zhang, H. High throughput study on magnetic ground states with hubbard u corrections in transition metal dihalide monolayers. Nanoscale Adv. 2, 495–501 (2020).

    Google Scholar 

  29. Li, W., Qian, X. & Li, J. Phase transitions in 2d materials. Nat. Rev. Mater. 6, 829–846 (2021).

    Google Scholar 

  30. Han, W. et al. Phase transition of 2D van der Waals ferroelectrics. 2D Mater. http://iopscience.iop.org/article/10.1088/2053-1583/add749 (2025).

  31. Rasmussen, F. A. & Thygesen, K. S. Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C. 119, 13169–13183 (2015).

    Google Scholar 

  32. Malyi, O. I., Sopiha, K. V. & Persson, C. Energy, phonon, and dynamic stability criteria of two-dimensional materials. ACS Appl. Mater. Interfaces 11, 24876–24884 (2019).

    Google Scholar 

  33. Kośmider, K., González, J. W. & Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013).

    Google Scholar 

  34. Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    Google Scholar 

  35. Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014).

    Google Scholar 

  36. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  37. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Google Scholar 

  38. Haastrup, S. et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).

    Google Scholar 

  39. Liu, E. et al. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 123, 027401 (2019).

    Google Scholar 

  40. Lyons, T. P. et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nat. Commun. 10, 2330 (2019).

    Google Scholar 

  41. Calman, E. V. et al. Indirect excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 20, 1869–1875 (2020).

    Google Scholar 

  42. Mørch Nielsen, C. E., Fischer, F. & Bester, G. Beyond the K-valley: exploring unique trion states in indirect band gap monolayer WSe2. npj 2D Mater. Appl. 9, 11 (2025).

    Google Scholar 

  43. Frisenda, R. et al. Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. npj 2D Mater. Appl. 1, 10 (2017).

    Google Scholar 

  44. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).

    Google Scholar 

  45. Giannozzi, P. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter. 29, 465901 (2017).

    Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  47. van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Google Scholar 

  48. Sohier, T., Calandra, M. & Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).

    Google Scholar 

  49. Franceschetti, A., Fu, H., Wang, L. W. & Zunger, A. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819–1829 (1999).

    Google Scholar 

  50. Bester, G. Electronic excitations in nanostructures: an empirical pseudopotential based approach. J. Phys. Condens. Matter 21, 023202 (2008).

    Google Scholar 

  51. Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Google Scholar 

  52. Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).

    Google Scholar 

  53. Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys. Condens. Matter 31, 325902 (2019).

    Google Scholar 

  54. Torche, A. & Bester, G. Biexcitons fine structure and non-equilibrium effects in transition metal dichalcogenides monolayers from first principles. Commun. Phys. 4, 67 (2021).

    Google Scholar 

Download references

Acknowledgements

The project is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Priority Program SPP2244 2DMP and by the Cluster of Excellence “Advanced Imaging of Matter” of the DFG -- EXC 2056 -- project ID 390715994. Calculations were carried out on Hummel funded by the DFG – 498394658. We acknowledge financial support from the Open Access Publication Fund of Universität Hamburg.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Institute of Physical Chemistry, University of Hamburg, Hamburg, Germany

    Franz Fischer, Carl Emil Mørch Nielsen, Marta Prada & Gabriel Bester

  2. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

    Franz Fischer

  3. I. Institute for Theoretical Physics, University of Hamburg, Hamburg, Germany

    Marta Prada

  4. The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany

    Gabriel Bester

Authors
  1. Franz Fischer
    View author publications

    Search author on:PubMed Google Scholar

  2. Carl Emil Mørch Nielsen
    View author publications

    Search author on:PubMed Google Scholar

  3. Marta Prada
    View author publications

    Search author on:PubMed Google Scholar

  4. Gabriel Bester
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.F. conceptualized the research, conducted all calculations, analyzed, and visualized the results. Method development was carried out by F.F. and C.E.M.N., all authors (F.F., C.E.M.N., M.P., and G.B.) contributed equally to the writing of the manuscript.

Corresponding author

Correspondence to Gabriel Bester.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, F., Nielsen, C.E.M., Prada, M. et al. Unconventional bright ground-state excitons in monolayer TiI2 from first-principles calculations. npj 2D Mater Appl (2026). https://doi.org/10.1038/s41699-025-00656-z

Download citation

  • Received: 18 June 2025

  • Accepted: 18 December 2025

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41699-025-00656-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editor
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj 2D Materials and Applications (npj 2D Mater Appl)

ISSN 2397-7132 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing