Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj 2D Materials and Applications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj 2d materials and applications
  3. review
  4. article
Hexagonal boron nitride: interlayer with atomic scale precision for interface engineering in functional materials and devices
Download PDF
Download PDF
  • Review
  • Open access
  • Published: 17 January 2026

Hexagonal boron nitride: interlayer with atomic scale precision for interface engineering in functional materials and devices

  • Ju-Hyun Jung1 &
  • Cheol-Joo Kim1,2 

npj 2D Materials and Applications , Article number:  (2026) Cite this article

  • 1270 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Physics

Abstract

Atomically thin hexagonal boron nitride (hBN) interlayers control interactions between electronic states of interfacing materials by modulating their separation at the atomic scale. These interlayers regulate interactions, whose strengths vary with distance. Here, we review how hBN is employed to enhance electronic and optoelectronic performance by mitigating disadvantageous interactions while preserving advantageous ones. Recent advances in hBN growth and integration are highlighted, and challenges that hinder widespread application are discussed.

Similar content being viewed by others

Wafer-scale AA-stacked hexagonal boron nitride grown on a GaN substrate

Article 19 March 2025

One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions

Article Open access 01 November 2023

An ab initio study on resistance switching in hexagonal boron nitride

Article Open access 05 September 2022

Data availability

No datasets were generated or analysed during the current study.

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  2. Liu, X. & Hersam, M. C. Interface Characterization and Control of 2D Materials and Heterostructures. Adv. Mater. 30, 1801586 (2018).

    Google Scholar 

  3. Harfah, H., Wicaksono, Y., Sunnardianto, G. K., Majidi, M. A. & Kusakabe, K. High magnetoresistance of a hexagonal boron nitride–graphene heterostructure-based MTJ through excited-electron transmission. Nanoscale Adv. 4, 117–124 (2022).

    Google Scholar 

  4. Jang, J. et al. Reduced dopant-induced scattering in remote charge-transfer-doped MoS2 field-effect transistors. Sci. Adv. 8, eabn3181 (2022).

    Google Scholar 

  5. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Google Scholar 

  6. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Google Scholar 

  7. Lee, D. et al. Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron. 4, 664–670 (2021).

    Google Scholar 

  8. Cai, Q. et al. Boron nitride nanosheets improve sensitivity and reusability of surface-enhanced Raman spectroscopy. Angew. Chem. 128, 8545–8549 (2016).

    Google Scholar 

  9. Lee, M.-H. et al. Two-dimensional materials inserted at the metal/semiconductor interface: attractive candidates for semiconductor device contacts. Nano Lett. 18, 4878–4884 (2018).

    Google Scholar 

  10. Park, J.-H., Yang, S.-J., Choi, C.-W., Choi, S.-Y. & Kim, C.-J. Pristine graphene insertion at the metal/semiconductor interface to minimize metal-induced gap states. ACS Appl. Mater. Interfaces 13, 22828–22835 (2021).

    Google Scholar 

  11. Wang, J. I. et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 21, 398–403 (2022).

    Google Scholar 

  12. Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Google Scholar 

  13. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Google Scholar 

  14. Ma, K. Y., Kim, M. & Shin, H. S. Large-area hexagonal boron nitride layers by chemical vapor deposition: growth and applications for substrates, encapsulation, and membranes. Acc. Mater. Res. 3, 748–760 (2022).

    Google Scholar 

  15. Chernikov, A. et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Google Scholar 

  16. Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

    Google Scholar 

  17. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D. Mater. Appl. 2, 6 (2018).

    Google Scholar 

  18. Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. JETP Lett. 29, 716 (1979).

    Google Scholar 

  19. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B. 88, 045318 (2013).

    Google Scholar 

  20. Utama, M. I. B. et al. A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2, 60–65 (2019).

    Google Scholar 

  21. Bai, Y. et al. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Sci. Adv. 5, eaav7127 (2019).

    Google Scholar 

  22. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Google Scholar 

  23. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Google Scholar 

  24. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Google Scholar 

  25. van Loon, E. G. C. P. et al. Coulomb engineering of two-dimensional Mott materials. npj 2D Mater. Appl. 7, 47 (2023).

    Google Scholar 

  26. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Google Scholar 

  27. Florian, M. et al. The dielectric impact of layer distances on exciton and trion binding energies in van der Waals heterostructures. Nano Lett. 18, 2725–2732 (2018).

    Google Scholar 

  28. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Google Scholar 

  29. Ghosh, A. et al. Advancing excited-state properties of two-dimensional materials using a dielectric-dependent hybrid functional. Phys. Rev. B. 112, 045128 (2025).

    Google Scholar 

  30. Lin, Y. et al. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 14, 5569–5576 (2014).

    Google Scholar 

  31. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    Google Scholar 

  32. Ciarrocchi, A., Tagarelli, F., Avsar, A. & Kis, A. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022).

    Google Scholar 

  33. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Google Scholar 

  34. Li, L. H. et al. Dielectric screening in atomically thin boron nitride nanosheets. Nano Lett. 15, 218–223 (2015).

    Google Scholar 

  35. Zastrow, M. Meet the crystal growers who sparked a revolution in graphene electronics. Nature 572, 429–433 (2019).

    Google Scholar 

  36. Dreher, P. et al. Proximity effects on the charge density wave order and superconductivity in single-layer NbSe2. ACS Nano 15, 19430–19438 (2021).

    Google Scholar 

  37. Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO3. Science 367, 781–786 (2020).

    Google Scholar 

  38. Zollner, K., Gmitra, M., Frank, T. & Fabian, J. Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni). Phys. Rev. B. 94, 155441 (2016).

    Google Scholar 

  39. Jafarpisheh, S. et al. Proximity-induced spin-orbit coupling in graphene/Bi1.5Sb0.5Te1.7Se1.3 heterostructures. Phys. Rev. B. 98, 241402 (2018).

    Google Scholar 

  40. Cohnitz, L., De Martino, A., Häusler, W. & Egger, R. Proximity-induced superconductivity in Landau-quantized graphene monolayers. Phys. Rev. B. 96, 140506 (2017).

    Google Scholar 

  41. Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).

    Google Scholar 

  42. Lin, J.-X. et al. Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Google Scholar 

  43. Fan, S. et al. Quantum tunneling in two-dimensional van der Waals heterostructures and devices. Sci. China Mater. 64, 2359–2387 (2021).

    Google Scholar 

  44. Yang, S.-J. et al. Wafer-scale programmed assembly of one-atom-thick crystals. Nano Lett. 22, 1518–1524 (2022).

    Google Scholar 

  45. Ko, K. et al. Competition between bipolar conduction modes in extrinsically p-doped MoS2: interaction with gate dielectric matters. ACS Nano 19, 1630–1641 (2025).

    Google Scholar 

  46. Liu, X., Choi, M. S., Hwang, E., Yoo, W. J. & Sun, J. Fermi level pinning dependent 2D semiconductor devices: challenges and prospects. Adv. Mater. 34, 2108425 (2022).

    Google Scholar 

  47. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Google Scholar 

  48. Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    Google Scholar 

  49. Lan, H.-Y., Tripathi, R., Appenzeller, J. & Chen, Z. Near-ideal subthreshold swing in scaled 2D transistors: the critical role of monolayer hBN passivation. IEEE Electron Dev. Lett. 45, 1337–1340 (2024).

  50. Wang, J. et al. High Mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 28, 8302–8308 (2016).

    Google Scholar 

  51. Kim, Y. H. et al. Boltzmann switching MoS2 metal–semiconductor field-effect transistors enabled by monolithic-oxide-gapped metal gates at the schottky–mott limit. Adv. Mater. 36, 2314274 (2024).

    Google Scholar 

  52. Karpan, V. M., Khomyakov, P. A., Giovannetti, G., Starikov, A. A. & Kelly, P. J. Ni (111)|graphene|h-BN junctions as ideal spin injectors. Phys. Rev. B. 84, 153406 (2011).

    Google Scholar 

  53. Lee, M.-J. et al. Measurement of exciton and trion energies in multistacked hBN/WS2 coupled quantum wells for resonant tunneling diodes. ACS Nano 14, 16114–16121 (2020).

    Google Scholar 

  54. Xie, J. et al. On-chip direct synthesis of boron nitride memristors. Nat. Nanotechnol. 20, 1596–1604 (2025).

  55. Asshoff, P. U. et al. Magnetoresistance in Co-hBN-NiFe tunnel junctions enhanced by resonant tunneling through single defects in ultrathin hBN barriers. Nano Lett. 18, 6954–6960 (2018).

    Google Scholar 

  56. Tian, J. et al. A Josephson junction with h-BN tunnel barrier: observation of low critical current noise. J. Phys. Condens. Matter 33, 495301 (2021).

    Google Scholar 

  57. Withers, F. et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 15, 8223–8228 (2015).

    Google Scholar 

  58. Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020).

    Google Scholar 

  59. Kim, G. et al. Hexagonal boron nitride/Au substrate for manipulating surface plasmon and enhancing capability of surface-enhanced Raman spectroscopy. ACS Nano 10, 11156–11162 (2016).

    Google Scholar 

  60. Guselnikova, O. et al. New trends in nanoarchitectured SERS substrates: nanospaces, 2D materials, and organic heterostructures. Small 18, 2107182 (2022).

    Google Scholar 

  61. Cai, Q. et al. Boron nitride nanosheet-veiled gold nanoparticles for surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 8, 15630–15636 (2016).

    Google Scholar 

  62. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Google Scholar 

  63. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Google Scholar 

  64. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Google Scholar 

  65. Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    Google Scholar 

  66. Xu, Z. et al. Synergistic effects of charge transfer, energy transfer and cavity interference on the exciton emission in WS2/hBN/WS2 heterostructures. Nanoscale 17, 18889–18899 (2025).

    Google Scholar 

  67. Kumar, P. et al. Light–matter coupling in large-area van der Waals superlattices. Nat. Nanotechnol. 17, 182–189 (2022).

    Google Scholar 

  68. Zhou, H. et al. Controlling exciton and valley dynamics in two-dimensional heterostructures with atomically precise interlayer proximity. ACS Nano 14, 4618–4625 (2020).

    Google Scholar 

  69. Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 111, 6198–6202 (2014).

    Google Scholar 

  70. Vu, Q. A. et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett. 17, 453–459 (2017).

    Google Scholar 

  71. Islam, M. S. et al. Growth mechanisms of monolayer hexagonal boron nitride (h-BN) on metal surfaces: theoretical perspectives. Nanoscale Adv. 5, 4041–4064 (2023).

    Google Scholar 

  72. Page, R. et al. Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy. Phys. Rev. Mater. 3, 064001 (2019).

    Google Scholar 

  73. Cho, Y.-J. et al. Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy. Sci. Rep. 6, 34474 (2016).

    Google Scholar 

  74. Moon, S. et al. Metal-organic chemical vapor deposition of hexagonal boron nitride: from high-quality growth to functional engineering. 2D Mater. 12, 042006 (2025).

    Google Scholar 

  75. Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).

    Google Scholar 

  76. Sharma, S. et al. The influence of carbon on polytype and growth stability of epitaxial hexagonal boron nitride films. Adv. Mater. Interfaces 11, 2400091 (2024).

    Google Scholar 

  77. Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 606, 88–93 (2022).

    Google Scholar 

  78. Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    Google Scholar 

  79. Shi, Z. et al. Vapor–liquid–solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    Google Scholar 

  80. Zhang, L., Kong, X., Dong, J. & Ding, F. A mechanism for thickness-controllable single crystalline 2D materials growth. Sci. Bull. 68, 2936–2944 (2023).

    Google Scholar 

  81. Jung, J. H. et al. Step-directed epitaxy of unidirectional hexagonal boron nitride on vicinal Ge (110). Small Struct. 5, 2400297 (2024).

    Google Scholar 

  82. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Google Scholar 

  83. Pham, P. V. et al. Transfer of 2D films: from imperfection to perfection. ACS Nano 18, 14841–14876 (2024).

    Google Scholar 

  84. Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Prim. 2, 40 (2022).

    Google Scholar 

  85. Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Google Scholar 

  86. Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

    Google Scholar 

  87. Farmanbar, M. & Brocks, G. Ohmic contacts to 2D semiconductors through van der Waals bonding. Adv. Electron. Mater. 2, 1500405 (2016).

    Google Scholar 

  88. Farmanbar, M. & Brocks, G. Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer. Phys. Rev. B. 91, 161304 (2015).

    Google Scholar 

  89. Wang, G., Yang, P., Moody, N. A. & Batista, E. R. Overcoming the quantum efficiency-lifetime tradeoff of photocathodes by coating with atomically thin two-dimensional nanomaterials. npj 2D Mater. Appl. 2, 17 (2018).

    Google Scholar 

  90. Park, J.-H. et al. Reduction of hole carriers by van der waals contact for enhanced photoluminescence quantum yield in two-dimensional tin halide perovskite. ACS Energy Lett. 8, 3536–3544 (2023).

  91. Nguyen, V. L. et al. Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).

    Google Scholar 

  92. Zhao, C., Shan, L., Sun, R., Wang, X. & Ding, F. Wrinkle formation in synthesized graphene and 2D materials. Mater. Today 81, 104–117 (2024).

  93. Wang, Y. et al. Ultraflat single-crystal hexagonal boron nitride for wafer-scale integration of a 2D-compatible high-κ metal gate. Nat. Mater. 23, 1495–1501 (2024).

    Google Scholar 

  94. Yuan, G. et al. Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020).

    Google Scholar 

  95. Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    Google Scholar 

  96. Yuan, Y. et al. On the quality of commercial chemical vapour deposited hexagonal boron nitride. Nat. Commun. 15, 4518 (2024).

    Google Scholar 

  97. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    Google Scholar 

  98. Chubarov, M. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    Google Scholar 

  99. Suenaga, K., Kobayashi, H. & Koshino, M. Core-level spectroscopy of point defects in single layer h-BN. Phys. Rev. Lett. 108, 075501 (2012).

    Google Scholar 

  100. Qiu, Z. et al. Atomic and electronic structure of defects in hBN: enhancing single-defect functionalities. ACS Nano 18, 24035–24043 (2024).

    Google Scholar 

  101. Tang, T. W. et al. Structured-defect engineering of hexagonal boron nitride for identified visible single-photon emitters. ACS Nano 19, 8509–8519 (2025).

    Google Scholar 

  102. Sankar, S. et al. Optical properties of low-defect large-area hexagonal boron nitride for quantum applications. Phys. Status Solidi RRL 18, 2400034 (2024).

    Google Scholar 

  103. Okonai, T. et al. Anomalous Raman signals in multilayer hexagonal boron nitride grown by chemical vapour deposition on metal foil catalysts. Nanoscale Adv. 7, 7538–7546 (2025).

  104. Lyu, B. et al. Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride. Nano Lett. 19, 1982–1989 (2019).

    Google Scholar 

  105. Yang, Y. et al. Atomic defect quantification by lateral force microscopy. ACS Nano 18, 6887–6895 (2024).

    Google Scholar 

  106. Ismach, A. et al. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Mater. 4, 025117 (2017).

    Google Scholar 

  107. Chen, M. et al. Ultrawide-bandwidth boron nitride photonic memristors. Nat. Nanotechnol. 20, 1633–1640 (2025).

  108. Lee, G.-H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).

  109. Kaushik, N. et al. Reversible hysteresis inversion in MoS2 field effect transistors. npj 2D Mater. Appl. 1, 34 (2017).

    Google Scholar 

  110. Hwang, S. et al. A facile approach towards Wrinkle-Free transfer of 2D-MoS2 films via hydrophilic Si3N4 substrate. Appl. Surf. Sci. 604, 154523 (2022).

    Google Scholar 

  111. Zhao, P. et al. Understanding the impact of annealing on interface and border traps in the Cr/HfO2/Al2O3/MoS2 system. ACS Appl. Electron. Mater. 1, 1372–1377 (2019).

    Google Scholar 

  112. Qian, Q. et al. Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS2 MOSFET with an AlN interfacial layer. Sci. Rep. 6, 27676 (2016).

    Google Scholar 

  113. McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).

    Google Scholar 

  114. Yan, H. et al. A clean van der Waals interface between the high-k dielectric zirconium oxide and two-dimensional molybdenum disulfide. Nat. Electron. 8, 906–912 (2025).

    Google Scholar 

  115. Xu, W. et al. Determining the optimized interlayer separation distance in vertical stacked 2D WS2:hBN:MoS2 heterostructures for exciton energy transfer. Small 14, 1703727 (2018).

    Google Scholar 

  116. Xu, W. et al. Controlling photoluminescence enhancement and energy transfer in WS2:hBN:WS2 vertical stacks by precise interlayer distances. Small 16, 1905985 (2020).

  117. Park, H. et al. Atomically precise control of carbon insertion into hBN monolayer point vacancies using a focused electron beam guide. Small 17, 2100693 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2023R1A2C2005427, RS-2023-00234622), and by the Institute for Basic Science (IBS-R034-D1).

Author information

Authors and Affiliations

  1. Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

    Ju-Hyun Jung & Cheol-Joo Kim

  2. Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, Republic of Korea

    Cheol-Joo Kim

Authors
  1. Ju-Hyun Jung
    View author publications

    Search author on:PubMed Google Scholar

  2. Cheol-Joo Kim
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.-H. J. and C.-J. K. conceived the outline of the review and wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Cheol-Joo Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, JH., Kim, CJ. Hexagonal boron nitride: interlayer with atomic scale precision for interface engineering in functional materials and devices. npj 2D Mater Appl (2026). https://doi.org/10.1038/s41699-026-00664-7

Download citation

  • Received: 17 August 2025

  • Accepted: 07 January 2026

  • Published: 17 January 2026

  • DOI: https://doi.org/10.1038/s41699-026-00664-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

2D Materials for Quantum Science and Technology

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editor
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj 2D Materials and Applications (npj 2D Mater Appl)

ISSN 2397-7132 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing