Table 1 Sleep classification techniques across different sleep-sensing modalities.

From: The future of sleep health: a data-driven revolution in sleep science and medicine

Technique

Technique variations

PSG/EEG

Wearable sensing

Statistical

Latent dirichlet allocation

167

 
 

Support vector machines

168

169

 

Hidden Markov model

170

171

 

Quadratic

172

 
 

Bayesian

173

 
 

Logistic regression

174

107

Instance base

K-nearest neighbours

108

109

Decision tree

Decision tree

175

35,176

Ensemble model

Adaboost

177

 
 

Bagging

178

 
 

Random forest

179

180,181

 

XGBoost

182

 

Clustering

K-means classifier

183

 
 

Spectral clustering GMM

184

 

ANN and DNN

Convolutional NN

185

76,107

 

Recurrent NN (LSTMs, GRUs)

186

107,187,188

Others/heuristic

Fuzzy classifier

189

 
 

Wavelet methods

190

 
 

Sadeh

 

45

 

Sazonov

 

191

 

Oakley

 

192

 

Cole-Kripke

 

193

 

Webster

 

194

 

ADAS

 

195

 

Scripps clinic

 

196