Table 1 Original research reporting applications of explainable AI in mental health.

From: Explainable artificial intelligence for mental health through transparency and interpretability for understandability

Citation

Application

Methods

XAI methods

Define

Evaluate

Defers to method

Neuroimaging/EEG

Chang et al., 202046

P, D

DL

FI

No

No

Yes

Supekar et al., 2022a17

P, D

DL

FI

No

Partial

Yes

Supekar et al., 2022b18

P, D

DL

FI

No

Partial

Yes

Kalmady et al., 202115

P, D

DL, ER

Des, FI

Yes

No

Yes

Bučková et al., 202016

P

R

Des

Partial

No

Yes

Ben-Zion et al., 202247

D

R

FI

No

No

Yes

Al Zoubi et al., 202119

P

DL, R, SVM, RF, NB, XG

FI

No

Partial

Yes

Smucny et al., 202148

P

DL, MLP, SVM, RF, NB, K*, DT, AB

FI

No

No

Yes

Survey

Mishra et al., 202149

P, D

DT

FI, CI

Yes

Yes

No

Ammar et al., 202029

DM

KG

Pr

Yes

Yes

No

Schaik et al., 201950

P, D

R, DR

Des

Partial

No

No

Jha et al., 202131

P, D

R, SVM, RF, NB, BN

Des, Pr

No

Yes

Yes

Byeon, 202120

P, D

SVM, RF, XG, AB, LGB

Pr, FI

Partial

Yes

Yes

Ntakolia et al., 202243

P

R, SVM, RF, XG, kNN, DT, MLP

FI

No

Yes

No

Physiological

Jaber et al., 202230

P

RF

Pr, FI

Yes

Yes

No

  1. Application: P prediction, D discovery, DM decision making; Methods: DL deep learning, ER ensemble of regressions, R regression, SVM support vector machine, RF random forest, NB Naive Bayes, XG XGBoost, MLP multilayer perceptron, K* K-star instance-based classifier, DT decision trees, AB AdaBoost, KG knowledge graph, LGB light gradient boost, kNN k-nearest neighbour; XAI Methods: FI feature importance, Des by design, CI causal inference, Pr presentation.