Table 1 Results of model architectures for the different learning schemes and label types
From: Real world federated learning with a knowledge distilled transformer for cardiac CT imaging
Training Scheme | Model | HPs & COs ↓ [mm] | MS ↓ [mm] | Calc ↑ [DICE] | |||
|---|---|---|---|---|---|---|---|
Training | Other | Training | Other | Training | Other | ||
Local | UNet | 3.48 ± 2.77 | 4.27 ± 2.94 | 3.01 ± 1.84 | 4.30 ± 1.82 | 0.708 ± 0.103 | 0.644 ± 0.290 |
ViT | 9.45 ± 11.87 | 14.85 ± 16.35 | 6.86 ± 11.14 | 37.88 ± 33.10 | 0.644 ± 0.184 | 0.474 ± 0.275 | |
SWIN | 2.66 ± 1.79 | 4.89 ± 4.08 | 3.96 ± 2.19 | 4.06 ± 2.16 | 0.709 ± 0.190 | 0.466 ± 0.265 | |
Fed | UNet | 2.91 ± 2.54 | 3.75 ± 2.38 | 3.27 ± 2.02 | 3.75 ± 1.96 | 0.495 ± 0.209 | 0.391 ± 0.212 |
ViT | 4.75 ± 4, 17 | 3.71 ± 1.88 | 3.82 ± 2.50 | 5.32 ± 4.98 | 0.671 ± 0.191 | 0.636 ± 0.285 | |
SWIN | 3.53 ± 2.82 | 3.98 ± 2.05 | 3.03 ± 1.85 | 3.30 ± 1.60 | 0.683 ± 0.202 | 0.692 ± 0.232 | |
FedKD | UNet | 3.54 ± 2.85 | 4.25 ± 2.94 | 2.99 ± 1.81 | 3.40 ± 1.56 | 0.527 ± 0.209 | 0.526 ± 0.228 |
ViT | 4.70 ± 4.14 | 3.72 ± 1.88 | 3.28 ± 2.31 | 4.35 ± 2.34 | 0.562 ± 0.200 | 0.566 ± 0.240 | |
SWIN | 3.04 ± 2.34 | 3.54 ± 2.12 | 2.95 ± 1.72 | 3.29 ± 1.45 | 0.646 ± 0.208 | 0.670 ± 0.231 | |