Table 2 Overall Mortality Prediction Performance

From: Improving medical machine learning models with generative balancing for equity and excellence

 

Downstream Method F1 Score

Training Data

eICU

MIMIC

 

Avg

KNN

LR

NN

RFC

XGB

Avg

KNN

LR

NN

RFC

XGB

Original Data

0.376 ± 0.02

0.180 ± 0.02

0.453 ± 0.03

0.486 ± 0.03

0.272 ± 0.02

0.490 ± 0.02

0.296 ± 0.00

0.112 ± 0.00

0.389 ± 0.00

0.428 ± 0.01

0.150 ± 0.00

0.400 ± 0.00

Upsampling

0.381 ± 0.01

0.249 ± 0.02

0.485 ± 0.01

0.427 ± 0.02

0.240 ± 0.02

0.504 ± 0.01

0.130 ± 0.00

0.113 ± 0.01

0.170 ± 0.01

0.202 ± 0.01

0.011 ± 0.00

0.155 ± 0.00

Downsampling

0.442 ± 0.01

0.273 ± 0.02

0.481 ± 0.01

0.481 ± 0.01

0.487 ± 0.01

0.486 ± 0.01

0.109 ± 0.00

0.053 ± 0.00

0.164 ± 0.00

0.150 ± 0.01

0.016 ± 0.00

0.161 ± 0.00

SMOTE

0.427 ± 0.01

0.289 ± 0.02

0.461 ± 0.01

0.446 ± 0.01

0.440 ± 0.02

0.500 ± 0.01

0.252 ± 0.00

0.181 ± 0.01

0.353 ± 0.00

0.210 ± 0.01

0.124 ± 0.00

0.393 ± 0.00

MCRAGE

0.376 ± 0.02

0.127 ± 0.01

0.454 ± 0.03

0.513 ± 0.02

0.295 ± 0.02

0.491 ± 0.03

0.298 ± 0.00

0.102 ± 0.00

0.389 ± 0.00

0.425 ± 0.00

0.172 ± 0.01

0.399 ± 0.00

SMA

0.280 ± 0.01

0.111 ± 0.01

0.379 ± 0.01

0.451 ± 0.02

0.091 ± 0.02

0.369 ± 0.02

–

–

–

–

–

–

FairPlay

0.457 ± 0.01

0.292 ± 0.02

0.498 ± 0.01

0.494 ± 0.01

0.487 ± 0.01

0.513 ± 0.01

0.329 ± 0.00

0.128 ± 0.00

0.401 ± 0.01

0.442 ± 0.01

0.266 ± 0.00

0.407 ± 0.01

  1. Bold fonts indicates the best performing model.