Table 3 Group Fairness Metrics
From: Improving medical machine learning models with generative balancing for equity and excellence
| Â | eICU | MIMIC-IV | ||||||
|---|---|---|---|---|---|---|---|---|
Training Data | Age | Gender | Race | Insurance | ||||
| Â | Disparate Impact | Theil Index | Disparate Impact | Theil Index | Disparate Impact | Theil Index | Disparate Impact | Theil Index |
Original Data | 0.772 | 0.0137 | 0.971 | 0.1566 | 1.217 | 0.0106 | 0.907 | 0.0015 |
Upsampling | 0.898 | 0.0058 | 0.962 | 0.0760 | 1.165 | 0.0119 | 0.946 | 0.0004 |
Downsampling | 0.961 | 0.0023 | 0.992 | 0.0419 | 1.203 | 0.0112 | 0.922 | 0.0007 |
Separate Models | 0.917 | 0.1348 | 1.024 | 0.3003 | 1.083 | 0.0342 | 0.966 | 0.0033 |
SMOTE | 0.912 | 0.0097 | 0.978 | 0.1233 | 1.108 | 0.0260 | 1.008 | 0.0008 |
MCRAGE | 0.757 | 0.0142 | 0.968 | 0.2100 | 1.232 | 0.0104 | 0.896 | 0.0016 |
SMA | 0.878 | 0.0093 | 0.992 | 0.0606 | – | – | – | – |
FairPlay | 1.038 | 0.0026 | 0.991 | 0.0519 | 1.197 | 0.0105 | 0.923 | 0.0011 |