Table 10 Hyperparameter settings for the client-end deep learning model and the control parameters for the CVXOPT solver

From: FedOcw: optimized federated learning for cross-lingual speech-based Parkinson’s disease detection

Layer/Component

Parameter Settings

Time-distributed 2D-CNNs

Filters = 16, Kernel size = (3,3), Padding = (1,1), Activation = ReLU

Time-distributed Batch Normalization

Momentum = 0.1

Time-distributed 2D AveragePooling

Pool size = (3,3)

Time-distributed Dropout

Dropout rate = 0.3

Time-distributed Flatten

1D-CNN

Filters = 8, Kernel size = 3, Padding = 1, Activation = Sigmoid

1D AveragePooling

Pool size = 3, Stride = 1

Flatten

Fully Connected Layer

384 hidden units, Activation = ReLU

Dropout

Dropout rate = 0.3

Output Layer

Activation = Sigmoid

Common Settings

Optimizer = Adam, Learning rate = 0.001, Epochs per round = 10, Batch size = 8

CVXOPT Solver Parameters

Maxiters = 20, Abstol = 1e-3, Reltol = 1e-3, Feastol = 1e-3