Table 5 Country-level dataset sizes and class distributions, sorted by dataset size and organized column-wise

From: Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data

Country

Dataset Size

Class

Country

Dataset Size

Class

Country

Dataset Size

Class

  

Class 0 (%)

Class 1 (%)

  

Class 0 (%)

Class 1 (%)

  

Class 0 (%)

Class 1 (%)

CZ

55435

91.26

8.74

TN

4780

77.99

22.01

EG

241

99.59

0.41

IT

54354

85.60

14.40

CH

3836

92.39

7.61

GB

221

88.24

11.76

TR

37853

90.98

9.02

IR

2980

83.99

16.01

NZ

110

91.82

8.18

ES

33396

86.39

13.61

AR

2440

88.11

11.89

MK

103

97.09

2.91

CA

27131

85.65

14.35

LB

1937

93.86

6.14

GR

99

73.74

26.26

AU

23906

88.50

11.50

US

1344

89.96

10.04

RO

89

93.26

6.74

PT

6884

88.83

11.17

IL

1140

87.02

12.98

IE

69

97.10

2.90

BE

6534

90.54

9.46

OM

969

94.12

5.88

IN

59

91.53

8.47

KW

5725

93.15

6.85

CU

782

86.57

13.43

FR

55

100.00

0.00

HU

4892

93.40

6.60

BR

578

87.20

12.80

MT

45

100.00

0.00

NL

4869

84.86

15.14

SA

256

89.84

10.16

    
  1. The table summarizes the dataset size and the proportion of Class 0 (MS worsening not confirmed) and Class 1 (MS worsening confirmed) for each participating country. Countries are sorted by dataset size in descending order. The data highlight substantial heterogeneity across countries, both in the number of available samples and in class balance. While Class 0 generally dominates, several countries exhibit severe class imbalance or complete absence of one class, underscoring the challenges of federated learning across non-identically distributed clinical datasets.