Table 1 Study characteristics

From: A scoping review of human digital twins in healthcare applications and usage patterns

Author affiliation

n (%)

 Academic/Medical

130 (87.25)

 Industry

14 (9.40)

 Government

5 (3.36)

Design of model

n (%)

 Empirical

64 (42.95)

 Mechanistic

47 (31.55)

 Hybrid

38 (25.50)

Type of model

n (%)

 Personalized digital model, not used for decision support

56 (37.58)

 Personalized digital model, used once for decision support

31 (20.81)

 Digital twin; dynamically updated with human-in-the-loop recommendations

17 (11.41)

 Virtual patient cohort

15 (10.07)

 General digital model

15 (10.07)

 Digital shadow; dynamically updated and not used for decision support

14 (9.40)

 Digital twin; dynamically updated, automatic updates to physical system

1 (0.67)

Systems modeled

n (%)

 Cardiac

43 (28.86)

 Metabolic

19 (12.75)

 Musculoskeletal

18 (12.08)

 Other

14 (9.40)

 Cancer

11 (7.38)

 Whole body

10 (6.71)

 Respiratory

9 (6.04)

 Neurological

6 (4.03)

 Hepatic

5 (3.36)

 Immune

5 (3.36)

 Surgical site

4 (2.68)

 Epidermal

3 (2.01)

 Reproductive

2 (1.34)