Table 2 Comparison of survival prediction methods on TCGA-BRCA and TCGA-BLCA datasets

From: HONeYBEE: enabling scalable multimodal AI in oncology through foundation model-driven embeddings

Category

Method

BRCA

BLCA

Baseline methods

SurvPath29

0.655 ± 0.089

0.625 ± 0.056

 

ABMIL (KP)30

0.615 ± 0.083

0.566 ± 0.038

 

MCAT31

0.652 ± 0.117

0.598 ± 0.094

 

MOTCat32

0.600 ± 0.095

0.596 ± 0.079

 

Porpoise33

0.652 ± 0.042

0.636 ± 0.024

 

PathOmic34

–

0.586 ± 0.062

Individual modalities

Clinical features

Cox

0.920 ± 0.017

0.823 ± 0.011

 

RSF

0.845 ± 0.020

0.799 ± 0.026

 

DeepSurv

0.928 ± 0.013

0.842 ± 0.018

Pathology report features

Cox

0.495 ± 0.056

0.556 ± 0.044

 

RSF

0.511 ± 0.066

0.534 ± 0.038

 

DeepSurv

0.497 ± 0.047

0.561 ± 0.025

Molecular features

Cox

0.525 ± 0.066

0.501 ± 0.026

 

RSF

0.426 ± 0.061

0.536 ± 0.045

 

DeepSurv

0.520 ± 0.012

0.468 ± 0.015

WSI features

Cox

0.461 ± 0.051

0.519 ± 0.053

 

RSF

0.491 ± 0.049

0.524 ± 0.036

 

DeepSurv

0.464 ± 0.051

0.517 ± 0.048

Multimodal fusion

Concatenation

Cox

0.767 ± 0.052

0.799 ± 0.022

 

RSF

0.808 ± 0.029

0.790 ± 0.028

 

DeepSurv

0.847 ± 0.040

0.820 ± 0.015

Mean pooling

Cox

0.589 ± 0.042

0.648 ± 0.041

 

RSF

0.592 ± 0.083

0.577 ± 0.061

 

DeepSurv

0.666 ± 0.048

0.689 ± 0.019

Kronecker product

Cox

0.728 ± 0.030

0.709 ± 0.055

 

RSF

0.625 ± 0.068

0.705 ± 0.028

 

DeepSurv

0.758 ± 0.023

0.721 ± 0.018

  1. Results are reported as concordance index (mean ± std). Bold text: best performance, underline: second-best.