Table 3 Detailed search cost and classification performance comparison for one-shot NAS methods on the BreakHis and Diabetic datasets
Dataset: BreakHis | ||||||
|---|---|---|---|---|---|---|
| Â | ShuffleNet backbone | ViT backbone | ||||
Metric | Random search | Cream | Pathology-NAS | Random search | AutoFormer | Pathology-NAS |
Iterations ↓ | 500 | 300 | 10 | 500 | 300 | 10 |
GPT-4 API Calls | 0 | 0 | 10 | 0 | 0 | 10 |
FLOPs ↓ | 275.96M | 442.99M | 213.30M | 4.42G | 1.28G | 4.95G |
Prec@1 (%) ↑ | 95.21 ± 0.34 | 97.13 ± 0.41 | 99.98 ± 0.27*** | 95.67 ± 0.22 | 96.21 ± 0.39 | 98.08 ± 0.26*** |
API Cost ($) | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.17 |
Latency (hrs) | 0.000 | 0.000 | 0,001 | 0.000 | 0.000 | 0.001 |
ST (GPU hrs) ↓ | 32.40 | 10.63 | 7.42 | 67.28 | 31.72 | 14.88 |
TT (GPU hrs) ↓ | 32.400 | 10.630 | 7.421 | 67.280 | 31.720 | 14.881 |
Dataset: Diabetic | ||||||
|---|---|---|---|---|---|---|
| Â | ShuffleNet Backbone | ViT Backbone | ||||
Metric | Random search | Cream | Pathology-NAS | Random search | AutoFormer | Pathology-NAS |
Iterations ↓ | 500 | 120 | 10 | 500 | 300 | 10 |
GPT-4 API Calls | 0 | 0 | 10 | 0 | 0 | 10 |
FLOPs ↓ | 246.32M | 440.07M | 240.25M | 4.77G | 1.28G | 4.13G |
Prec@1 (%) ↑ | 65.03 ± 0.59 | 70.31 ± 0.38 | 73.22 ± 0.34*** | 58.47 ± 0.57 | 67.62 ± 0.24 | 70.38 ± 0.22*** |
API Cost ($) | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.18 |
Latency (hrs) | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 |
ST (GPU hrs) ↓ | 10.90 | 1.43 | 1.16 | 22.76 | 11.24 | 6.12 |
TT (GPU hrs) ↓ | 10.900 | 1.430 | 1.161 | 22.760 | 11.240 | 6.121 |