Table 5 Detailed search cost and segmentation performance comparison for one-shot NAS methods on BCSS, PanNuke and Zenodo Lung datasets, with U-Net based backbone
| Â | Dataset: BCSS | Dataset: PanNuke | Dataset: Zenodo Lung | |||
|---|---|---|---|---|---|---|
Metric | Random search | Pathology-NAS | Random search | Pathology-NAS | Random search | Pathology-NAS |
Iterations ↓ | 500 | 10 | 500 | 10 | 500 | 10 |
GPT-4 API Calls | 0 | 10 | 0 | 10 | 0 | 10 |
FLOPs (G) ↓ | 12.63 | 10.58 | 17.72 | 14.33 | 38.45 | 18.52 |
Dice (%) | 70.41 ± 0.18 | 74.12 ± 0.22*** | 88.24 ± 0.38 | 89.31 ± 0.44** | 71.77 ± 0.46 | 73.94 ± 0.46*** |
IoU (%) | 55.38 ± 0.20 | 59.45 ± 0.23*** | 80.61 ± 0.47 | 81.30 ± 0.45* | 59.97 ± 0.39 | 62.05 ± 0.31*** |
API Cost ($) | 0.00 | 0.14 | 0.00 | 0.15 | 0.00 | 0.16 |
Latency (hrs) | 0.0000 | 0.0005 | 0.0000 | 0.0004 | 0.0000 | 0.0005 |
ST (GPU hrs) ↓ | 194.68 | 12.14 | 13.44 | 2.14 | 7.46 | 0.72 |
TT (GPU hrs) ↓ | 194.680 | 12.141 | 13.440 | 2.140 | 7.460 | 0.721 |