Table 3 Performance of each of the three XGBoost classification models
From: Smartphone-based prediction of dopaminergic deficit in prodromal and manifest Parkinson’s disease
AUC ± SD (95% CI) | AUC adjusted ± SD (95% CI) | Sensitivity ± SD | Specificity ± SD | Balanced accuracy ± SD (Sensitivity + Specificity)/2 | |
|---|---|---|---|---|---|
MDS-UPDRS-III | 0.85 ± 0.04(0.72–0.90) | 0.79 ± 0.05(0.68-0.88) | 0.68 ± 0.23 | 0.89 ± 0.10 | 0.79 ± 0.13 |
Smartphone features (XGBoost) | 0.84 ± 0.11 (0.74–0.90) | 0.80 ± 0.05 (0.72–0.88) | 0.68 ± 0.11 | 0.80 ± 0.19 | 0.74 ± 0.11 |
Smartphone features + MDS-UPDRS-III (XGBoost) | 0.88 ± 0.05 (0.75-0.92) | 0.82 ± 0.05 (0.72–0.90) | 0.76 ± 0.10 | 0.91 ± 0.11 | 0.84 ± 0.07 |