Table 1 Scenario 1: Single continuous incomplete variable missing at random, 9 continuous complete variables, 100 random runs, 30% missing rate

From: Secure distributed multiple imputation enables missing data inference for private data proprietors

  

Final analysis

Imputation

Performance

 

Technology

Θ bias

Θ SD

Θ rMSE

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (μ)

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (σ)

Discr.

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (μ)

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (σ)

Time (s)

Net (MB)

500 inds.

Python

0.045

10-4

0.045

0.041

0.034

0

0.496

0.073

0.061

N/A

 

PyMICE

0.042

1.57 × 10-16

0.042

0.040

0.032

N/A

0.498

0.034

0.223

N/A

 

SMC-MICE

0.045

4.18 × 10-4

0.045

0.041

0.034

0

0.496

0.073

0.090

4.737

 

MHE-MICE

0.065

3.91 × 10-4

0.065

0.044

0.035

0

0.496

0.071

1658

19,834

5000 inds.

Python

0.025

4.00 × 10-16

0.025

0.031

0.027

0

0.814

0.601

0.149

N/A

 

PyMICE

0.019

4.15 × 10-16

0.019

0.027

0.025

N/A

0.813

0.600

0.205

N/A

 

SMC-MICE

0.019

1.15 × 10-4

0.019

0.029

0.026

0

0.813

0.601

0.536

44.641

 

MHE-MICE

0.019

1.13 × 10-4

0.019

0.029

0.026

0

0.813

0.601

2129

32,839

  1. The bolded values denote the best result in each column.