Table 3 Scenario 3: Single continuous incomplete variable missing at random, single continuous complete variable, 100 random runs, 50% missing rate

From: Secure distributed multiple imputation enables missing data inference for private data proprietors

  

Final analysis

Imputation

Performance

 

Technology

Θ bias

Θ SD

Θ rMSE

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (μ)

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (σ)

Discr.

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (μ)

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (σ)

Time (s)

Net (MB)

500 inds.

Python

0.014

5.24 × 10-4

0.014

0.028

0.019

0

0.392

0.238

0.023

N/A

 

PyMICE

0.014

2.22 × 10-16

0.014

0.028

0.018

N/A

0.393

0.235

0.046

N/A

 

SMC-MICE

0.013

2.35 × 10-3

0.013

0.028

0.018

0

0.392

0.238

0.038

1.686

 

MHE-MICE

0.016

2.40 × 10-3

0.016

0.031

0.021

0

0.388

0.248

285.9

9,629

5000 inds.

Python

0.002

3.09 × 10-4

0.002

0.021

0.013

0

0.494

0.074

0.086

N/A

 

PyMICE

0.015

0.0

0.015

0.021

0.014

N/A

0.494

0.072

0.031

N/A

 

SMC-MICE

0.002

4.06 × 10-2

0.040

0.040

0.019

0

0.494

0.074

0.206

16.176

 

MHE-MICE

0.069

2.40 × 10-2

0.069

0.051

0.027

0

0.494

0.087

1910

86,628

  1. The bolded values denote the best result in each column.