Table 4 Scenario 4: Single binary incomplete variable missing at random, single continuous complete variable, 100 random runs, 50% missing rate

From: Secure distributed multiple imputation enables missing data inference for private data proprietors

  

Final analysis

Imputation

Performance

 

Technology

Θ bias

Θ SD

Θ rMSE

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (μ)

\(| \widehat{{\rm{y}}}-{\rm{y}}|\) (σ)

Discr.

Accuracy

AUC

Time (s)

Net (MB)

500 inds.

Python

0.378

0.0

0.378

0.19

0.026

0

0.636

0.466

0.024

N/A

 

PyMICE

0.010

2.48 × 10-16

0.010

0.019

0.015

N/A

0.632

0.631

0.047

N/A

 

SMC-MICE

0.012

3.85 × 10-3

0.012

0.023

0.015

0

0.632

0.719

0.231

8.359

 

MHE-MICE

0.028

2.50 × 10-3

0.028

0.042

0.026

0

0.640

0.719

470.4

8298

5000 inds.

Python

0.348

2.48 × 10-16

0.348

0.184

0.121

0

0.529

0.510

0.081

N/A

 

PyMICE

0.004

0.0

0.004

0.024

0.014

N/A

0.525

0.500

0.031

N/A

 

SMC-MICE

0.060

1.08 × 10-1

0.123

0.105

0.045

0

0.518

0.467

2.016

86.63

 

MHE-MICE

0.082

4.97 × 10-3

0.083

0.087

0.038

0

0.523

0.467

1737

60,778

  1. The bolded values denote the best result in each column.