Abstract
Neuromorphic technologies typically employ a point neuron model, neglecting the spatiotemporal nature of neuronal computation. Dendritic morphology and synaptic organization are structurally tailored for spatiotemporal information processing, such as visual perception. Here we report a neuromorphic computational model that integrates synaptic organization with dendritic tree-like morphology. Based on the physics of multigate silicon nanowire transistors with ion-doped sol–gel films, our model—termed dendristor—performs dendritic computation at the device and neural-circuit level. The dendristor offers the bioplausible nonlinear integration of excitatory/inhibitory synaptic inputs and silent synapses with diverse spatial distribution dependency, emulating direction selectivity, which is the feature that reacts to signal direction on the dendrite. We also develop a neuromorphic dendritic neural circuit—a network of interconnected dendritic neurons—that serves as a building block for the design of a multilayer network system that emulates three-dimensional spatial motion perception in the retina.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The data for this study are available via GitHub at https://github.com/eunhye8747/Dendristor.
Code availability
The codes used in this study are available via GitHub at https://github.com/eunhye8747/Dendristor.
References
Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).
Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).
Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project. Proc. IEEE 102, 652–665 (2014).
Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).
Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).
Poirazi, P. & Papoutsi, A. Illuminating dendritic function with computational models. Nat. Rev. Neurosci. 21, 303–321 (2020).
Ujfalussy, B. B., Makara, J. K., Lengyel, M. & Branco, T. Global and multiplexed dendritic computations under in vivo-like conditions. Neuron 100, 579–592.e5 (2018).
Sidiropoulou, K., Pissadaki, E. K. & Poirazi, P. Inside the brain of a neuron. EMBO Rep. 7, 886–892 (2006).
Bhalla, U. S. Molecular computation in neurons: a modeling perspective. Curr. Opin. Neurobiol. 25, 31–37 (2014).
Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
Zenke, F. et al. Visualizing a joint future of neuroscience and neuromorphic engineering. Neuron 109, 571–575 (2021).
Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M. & Tolias, A. S. Engineering a less artificial intelligence. Neuron 103, 967–979 (2019).
Cannistraci, C. V., Alanis-Lobato, G. & Ravasi, T. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks. Sci. Rep. 3, 1613 (2013).
Cannistraci, C. V. Modelling self-organization in complex networks via a brain-inspired network automata theory improves link reliability in protein interactomes. Sci. Rep. 8, 15760 (2018).
London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–535 (2005).
Boahen, K. Dendrocentric learning for synthetic intelligence. Nature 612, 43–50 (2022).
Wybo, W. A. M., Torben-Nielsen, B., Nevian, T. & Gewaltig, M. O. Electrical compartmentalization in neurons. Cell Rep. 26, 1759–1773.e7 (2019).
Jarvis, S., Nikolic, K. & Schultz, S. R. Neuronal gain modulability is determined by dendritic morphology: a computational optogenetic study. PLoS Comput. Biol. 14, e1006027 (2018).
Vlasits, A. L. et al. A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron 89, 1317–1330 (2016).
Iascone, D. M. et al. Whole-neuron synaptic mapping reveals spatially precise excitatory/inhibitory balance limiting dendritic and somatic spiking. Neuron 106, 566–578.e8 (2020).
Ju, N. et al. Spatiotemporal functional organization of excitatory synaptic inputs onto macaque V1 neurons. Nat. Commun. 11, 697 (2020).
Jones, I. S. & Kording, K. P. Might a single neuron solve interesting machine learning problems through successive computations on its dendritic tree? Neural Comput. 33, 1554–1571 (2021).
Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep learning with segregated dendrites. eLife 6, e22901 (2017).
Ujfalussy, B. B., Makara, J. K., Branco, T. & Lengyel, M. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits. eLife 4, e10056 (2015).
Tran-Van-Minh, A. et al. Contribution of sublinear and supralinear dendritic integration to neuronal computations. Front. Cell Neurosci. 9, 67 (2015).
Tzilivaki, A., Kastellakis, G. & Poirazi, P. Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators. Nat. Commun. 10, 3664 (2019).
Li, S. et al. Dendritic computations captured by an effective point neuron model. Proc. Natl Acad. Sci. USA 116, 15244–15252 (2019).
Goetz, L., Roth, A. & Häusser, M. Active dendrites enable strong but sparse inputs to determine orientation selectivity. Proc. Natl Acad. Sci. USA 118, e2017339118 (2021).
Takahashi, N., Oertner, T. G., Hegemann, P. & Larkum, M. E. Active cortical dendrites modulate perception. Science 354, 1587–1590 (2016).
Vaney, D. I., Sivyer, B. & Taylor, W. R. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 13, 194–208 (2012).
Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).
Taylor, W. R., He, S., Levick, W. R. & Vaney, D. I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289, 2347–2350 (2000).
Mauss, A. S., Vlasits, A., Borst, A. & Feller, M. Visual circuits for direction selectivity. Annu. Rev. Neurosci. 40, 211–230 (2017).
Frank, A. C. et al. Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nat. Commun. 9, 422 (2018).
Kaifosh, P. & Losonczy, A. Mnemonic functions for nonlinear dendritic integration in hippocampal pyramidal circuits. Neuron 90, 622–634 (2016).
Gidon, A. & Segev, I. Principles governing the operation of synaptic inhibition in dendrites. Neuron 75, 330–341 (2012).
Malgaroli, A. Silent synapses: I can’t hear you! Could you please speak aloud? Nat. Neurosci. 2, 3–5 (1999).
Kerchner, G. A. & Nicoll, R. A. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9, 813–825 (2008).
Vincent-Lamarre, P., Lynn, M. & Béïque, J. C. The eloquent silent synapse. Trends Neurosci. 41, 557–559 (2018).
Kaiser, J. et al. Emulating dendritic computing paradigms on analog neuromorphic hardware. Neuroscience 489, 290–300 (2022).
Li, X. et al. Power-efficient neural network with artificial dendrites. Nat. Nanotechnol. 15, 776–782 (2020).
Wan, C. J. et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater. 28, 5878–5885 (2016).
He, Y. et al. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 31, e1900903 (2019).
Qian, C., Kong, Lan, Yang, J., Gao, Y. & Sun, J. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl. Phys. Lett. 110, 083302 (2017).
Zhu, L. Q., Cai, J. C., Ren, Z. Y., Xiong, W. & Wan, Q. in Neuromorphic Devices for Brain‐Inspired Computing: Artificial Intelligence, Perception and Robotics (eds Wan, Q. & Shi, Y.) Ch. 3 (Wiley, 2022).
Baek, E. et al. Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions. Nat. Electron. 3, 398–408 (2020).
Wang, D. et al. Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 5, 13 (2021).
Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–627 (2004).
Vervaeke, K., Lorincz, A., Nusser, Z. & Silver, R. A. Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science 335, 1624–1628 (2012).
Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat. Neurosci. 7, 373–379 (2004).
Grienberger, C., Chen, X. & Konnerth, A. Dendritic function in vivo. Trends Neurosci. 38, 45–54 (2015).
Branco, T., Clark, B. A. & Häusser, M. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329, 1671–1675 (2010).
Hanse, E., Seth, H. & Riebe, I. AMPA-silent synapses in brain development and pathology. Nat. Rev. Neurosci. 14, 839–850 (2013).
Xu, W., Löwel, S. & Schlüter, O. M. Silent synapse-based mechanisms of critical period plasticity. Front. Cell Neurosci. 14, 213 (2020).
Zhang, Y., Zhao, J., Wu, W., Muscoloni, A. & Cannistraci, C. V. Ultra-sparse network advantage in deep learning via Cannistraci-Hebb brain-inspired training with hyperbolic meta-deep community-layered epitopology. In The 12th International Conference on Learning Representations (2024).
Welchman, A. E. The human brain in depth: how we see in 3D. Annu. Rev. Vis. Sci. 2, 345–376 (2016).
Bird, A. D., Jedlicka, P. & Cuntz, H. Dendritic normalisation improves learning in sparsely connected artificial neural networks. PLoS Comput. Biol. 17, e1009202 (2021).
Lavzin, M., Rapoport, S., Polsky, A., Garion, L. & Schiller, J. Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490, 397–401 (2012).
Smith, S. L., Smith, I. T., Branco, T. & Häusser, M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503, 115–120 (2013).
Whritner, J. A. Visual Perception of Motion in the 3D Environment. PhD thesis, The Univ. of Texas at Austin (2022).
Beniaguev, D., Segev, I. & London, M. Single cortical neurons as deep artificial neural networks. Neuron 109, 2727–2739.e3 (2021).
Dominguez-Sanchez, A., Cazorla, M. & Orts-Escolano, S. Pedestrian movement direction recognition using convolutional neural networks. IEEE Trans. Intell. Transp. Syst. 18, 3540–3548 (2017).
Sun, Y. et al. Evaluating performance, power and energy of deep neural networks on CPUs and GPUs. in Theoretical Computer Science (eds Cai, Z. et al.) 196–221 (Springer, 2021).
Liu, D., Yu, H. & Chai, Y. Low‐power computing with neuromorphic engineering. Adv. Intell. Syst. 3, 2000150 (2021).
Chen, G. et al. Event-based neuromorphic vision for autonomous driving: a paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Process Mag. 37, 34–49 (2020).
Bian, S. et al. ColibriUAV: an ultra-fast, energy-efficient neuromorphic edge processing UAV-platform with event-based and frame-based cameras. In 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI) 287–292 (2023).
Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019).
Hines, M. L. & Carnevale, N. T. Neuron: a tool for neuroscientists. Neuroscientist 7, 123–135 (2001).
Akar, N. A. et al. Arbor Library v0.8. Zenodo https://doi.org/10.5281/zenodo.1459678 (2022).
Pagkalos, M., Chavlis, S. & Poirazi, P. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks. Nat. Commun. 14, 131 (2023).
Acknowledgements
E.B. and L.S. are funded by the National Nature Science Foundation of China (no. 62088102). E.B., S.S. and Z.R. are funded by STI2030–Major Projects 2021ZD0200300. S.S. is supported by a grant from Guoqiang Institute, Tsinghua University (2019GQB0001). C.V.C. is funded by the Zhou Yahui Chair Professorship award of Tsinghua University, the starting funding of the Tsinghua Laboratory of Brain and Intelligence (THBI) and the National High-Level Talent Program of the Ministry of Science and Technology of China. C.V.C. thanks A. Malgaroli for introducing and inspiring his research on silent synapses when he was a master student.
Author information
Authors and Affiliations
Contributions
E.B. and C.V.C. developed the concept of the dendristor and the neuromorphic visual motion perception system. C.V.C. devised the role of the silent synapses and the visual motion perception in dendritic computation. E.B. fabricated and measured the dendritic transistors and developed the NDNCs. S.S. clarified the silent synaptic function for modelling and advised on the biocomputational emulation. E.B. and C.V.C. designed the computational experiments and E.B. realized the computational experiments using LTspice. C.-K.B. fabricated and supported the electrical analysis of the Si nanowire transistors. E.B., Z.R., L.S. and C.V.C. analysed the data and results. E.B., Z.R., L.S. and C.V.C. designed the figures and E.B. realized them. E.B., Z.R., L.S. and C.V.C. wrote the paper and all authors reviewed it. C.V.C. and L.S. supervised the project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Electronics thanks Paschalis Gkoupidenis, Rui Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–14 and Figs. 1–14.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Baek, E., Song, S., Baek, CK. et al. Neuromorphic dendritic network computation with silent synapses for visual motion perception. Nat Electron 7, 454–465 (2024). https://doi.org/10.1038/s41928-024-01171-7
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41928-024-01171-7
This article is cited by
-
AI-native robotic vision systems enabled by in-sensor computing
npj Unconventional Computing (2026)
-
Complex dynamics analysis of coupled memristive neurons and their hardware implementation
Nonlinear Dynamics (2026)
-
A spiking artificial neuron based on one diffusive memristor, one transistor and one resistor
Nature Electronics (2025)
-
Chelated tin halide perovskite for near-infrared neuromorphic imaging array enabling object recognition and motion perception
Nature Communications (2025)
-
Intrinsically flexible multimode reconfigurable transistors for polymorphic circuits and neuromorphic devices
Nature Communications (2025)


