A vision processing system that leverages reconfigurable memristive devices to implement different bioinspired neural networks can efficiently sense and process static and dynamic visual information.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Hosoya, T. et al. Nature 436, 71–77 (2005).
Berry, M. J. et al. Proc. Natl Acad. Sci. USA 94, 5411–5416 (1997).
Gu, L. et al. Nature 581, 278–282 (2020).
Chen, J. et al. Nat. Nanotechnol. 18, 882–888 (2023).
Mead, C. A. et al. Neural Netw. 1, 91–97 (1988).
Mennel, L. et al. Nature 579, 62–66 (2020).
Tan, H. & van Dijken, S. Nat. Commun. 14, 2169 (2023).
Zhou, Y. et al. Nat. Electron. 6, 870–878 (2023).
Dang, B. et al. Nat. Electron. https://doi.org/10.1038/s41928-024-01280-3 (2024).
LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Tan, H., van Dijken, S. A universal neuromorphic vision processing system. Nat Electron 7, 946–947 (2024). https://doi.org/10.1038/s41928-024-01288-9
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41928-024-01288-9